


space, as shown in Fig. 5. We define in the x − y plane
a corresponding uniform mesh, (i, j), where i ∈ [1, Ni]
and j ∈ [1, Nj ]. The grid spacing is given by ∆x in
the x−direction and ∆y in the y−direction. The volume
of one grid cell is V = l∆x∆y, where l is the assumed
domain depth in the z−direction.

We define i+, i−, j+ and j− as the indices of the
grid points at the corners of the cell that contains the
carrier (Fig. 5). w(i, j) is the charge-assignment weight
at grid point (i, j), and the grid position is as described
in Sec. II B. For the CIC scheme, the distribution weights
are given by

w(i−, j−) =wxwy,

w(i+, j−) =(1− wx)wy,

w(i−, j+) =wx(1− wy),

w(i+, j+) =(1− wx)(1− wy),

(10)

where

wx =
x(i+)− x

x(i+)− x(i−)
=

x(i+)− x

∆x
,

wy =
y(j+)− y

y(j+)− y(j−)
=

y(j+)− y

∆y
.

(11)

Note that charge conservation dictates
∑

i§,j§
w(i, j) = 1.

1. Charge assignment: The point charge density
q/V is assigned to the grid, producing a grid-based
charge density ρi,j . In NGP the entire charge q is
assigned to the nearest grid point, so that one of
the w(i, j) in Eq. (10) has value one and the rest
have value zero. In CIC, we allow i = floor(x/∆x)
and j = floor(y/∆y), and use i± = i + 1/2 ± 1/2
and j± = j + 1/2± 1/2 in equations (10) and (11).
In both schemes, we add qw(i, j)/V to ρi,j for all
(i, j).

2. Find the electrostatic solution: Starting with
ρi,j and ε, Poisson’s equation gives the grid-based
potential φi,j .

3. Calculate grid-based ~E: The electric field is
calculated on each mesh point (i, j) as Ex

i,j =
−(φi+1,j − φi−1,j)/(2∆x) and Ey

i,j = −(φi,j+1 −
φi,j−1)/(2∆y).

4. Interpolate: In NGP, the field acting on the
carrier is assumed to be that at the nearest grid
location. In CIC, ~E(x, y) is found using the w(i, j)
calculated for step 1: Ex(x, y) =

∑

i§,j§
w(i, j)Ex

i,j

and Ey(x, y) =
∑

i§,j§
w(i, j)Ey

i,j .

The NGP scheme is computationally simple, but
inaccuracies are introduced because the NGP scheme

effectively shifts the carrier position to the nearest
grid location for all electromagnetic interactions. Ad-
ditionally, this scheme does little to counteract local
charge density fluctuations resulting from a finite carrier
ensemble size [1, 65].

CIC is computationally more intensive than NGP,
but it vastly improves smoothing of local charge density
fluctuations, often permitting smaller ensemble sizes and
a decreased overall computational burden. CIC has been
shown to produce nonphysical fields at metal contacts,
however, and therefore must be used judiciously [64, 65].

2. EMC-FDTD NGP and CIC schemes

Consider a point charge with the current density
contribution ~J = (Jx, Jy) located at (x, y) in a 2D
FDTD mesh, as shown in Fig. 6. The computational
grid shown incorporates Hz, Ex, and Ey fields. Because
the Jx and Jy components are noncollocated in the
FDTD formulation, the problem is not straightforward.
The x− and y−current densities must be considered
independently.

Assume a CIC scheme with a rectangular charge cloud
of height ρ =q/V . A carrier moves from rn = (xn, yn) to
rn+1 = (xn+1, yn+1) over a single time step ∆t. For now
we assume rn and rn+1 are in the same grid cell, and the
cell is bound by indices (i, j) and (i + 1, j + 1). Then,
the Villasenor-Buneman method [68] defines the current
density contribution of that carrier by

Jx
i+ 1

2 ,j =
ρl

∆t
(xn+1 − xn)

(
j + 1− yn+1 + yn

2∆y

)
,

Jx
i+ 1

2 ,j+1 =
ρl

∆t
(xn+1 − xn)

(
yn+1 + yn

2∆y
− j

)
,

Jy

i,j+ 1
2

=
ρl

∆t
(yn+1 − yn)

(
i + 1− xn+1 + xn

2∆x

)
,

Jy

i+1,j+ 1
2

=
ρl

∆t
(yn+1 − yn)

(
xn+1 + xn

2∆x
− i

)
.

(12)

FIG. 6. The carrier at (x, y) in the staggered FDTD grid.
Only the Ex and Ey field components are shown.
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If the carrier passes through a grid cell boundary (or
two boundaries, if the carrier is located at the corner of
a grid cell), the current calculation is split into two (or
three) parts, where each part is used to find the carrier’s
current contribution within each cell. See Refs. [68, 70]
for further details. If ~J is defined in this manner, current
continuity is ensured.

1. Current assignment: The current density of the
particle is calculated from the change in the particle
position over ∆t. Jx

i+1/2,j , Jx
i+1/2,j+1, Jy

i,j+1/2 and
Jy

i+1,j+1/2 are calculated according to Eq. (12) and
the procedures given in Refs. [68–70].

2. Find the electrodynamic solution: Using Jx,
Jy and ε, FDTD gives the electric and magnetic
fields Ex, Ey and Hz.

3. Interpolate field: It is necessary to spatially
average the electric fields so that they are known
at the grid intersections, in order to avoid particle
self-force [70]. Ex

i,j = (Ex
i+1/2,j + Ex

i−1/2,j)/2 and
Ey

i,j = (Ex
i,j+1/2 +Ex

i,j−1/2)/2. The electric field at
the carrier’s location (x, y) is found by interpolating
between the nearest grid points following the
same procedure as that used in the CIC charge
assignment scheme.

III. THZ CONDUCTIVITY OF DOPED BULK
SILICON

The plasma frequency and characteristic scattering
rate of moderately doped semiconductors typically fall
within the THz regime [72]. For this reason, semicon-
ductor carrier response to THz-frequency stimulation
depends strongly on the specific form of the material
transport parameters. The bulk materials behavior in
the THz-range is extremely sensitive to small deviations
in doping density and temperature [73, 74].

In this section, we explore the use of the global
EMC-FDTD solver in the context of doped bulk silicon
materials characterization. First, for reference, we
review THz-regime experimental characterizations of
doped silicon in Sec. III A. Then in Sec. III B we describe
the specific coupled EMC-FDTD solver used to simulate
THz-frequency electromagnetic plane wave interactions
with doped bulk silicon, and the method we use to extract
the frequency-dependent effective conductivity from the
computed fields and currents. We examine simulation
performance in the context of predicted conductivity
convergence under variation in grid cell size, ensemble
size, averaging technique, and impedance mismatch.
Finally, we compare the simulation results – that is,
the predicted effective conductivity – with published
experimental results for doped silicon at THz frequencies.

A. Experimental characterization

Since the advent of THz time-domain spectroscopy
(THz-TDS) 20 years ago, extensive experimental work
has examined the THz characteristics of doped bulk
silicon [72–84]. Pure undoped silicon is almost
completely transparent and nondispersive under THz-
frequency radiation, more so than quartz, sapphire, or
fused silica, making silicon a very attractive THz-optics
material [73]. However, this behavior is only observed
in extremely pure samples. Carriers introduced by low-
level doping and impurities strongly impact the THz-
frequency materials characteristics of silicon [73]. As
doping density is increased, silicon becomes quite opaque
to THz radiation [72]. Because pure silicon is extremely
transparent, it is reasonable to assume that carrier-field
dynamics within doped silicon are solely responsible for
doped silicon’s opacity under THz radiation [73].

The seminal THz-TDS characterizations extracted
the complex transmission spectrum of semiconductor
samples through the use of freely-propagating THz
beams. The high accuracy of this technique is mainly
limited by uncertainties in sample thickness that lead
to minor uncertainties in the transmission amplitude,
and comparatively large (∼10%) uncertainties in the
phase [72].

As carrier density increases to around 1017 cm−3, the
increased opacity of silicon precludes transmission-based
characterization [79]. The development of reflection-
based THz-TDS in 1996 [85] has since permitted
extensive study of optically dense media [74, 79]. In
reflecting THz-TDS the exact placement and orientation
of the sample is critically important. In analogy to
uncertainties from sample thickness in transmission THz-
TDS, here small deviations in sample position contribute
to uncertainty in the reflection spectrum amplitude
and larger uncertainties in phase. This uncertainty
may be minimized by analytically sweeping the relative
positions of sample and reference plane; see, for example,
Ref. [79]. While careful implementation of reflecting
THz-TDS produces excellent results, the sensitivity of
the technique has prompted research into other THz-
regime characterization methods [81–84].

In summarizing available experimental results on
the THz characteristics of doped silicon, we consider
only those reports which provide sufficient data for
comparison: the room temperature dc resistivity or
assumed equivalent doping density, as well as THz-range
fitting doping density or plasma frequency [72, 74, 77–81].
These data are shown in Table I. In nearly every case,
these results were extracted from observed reflection and
transmission spectra assuming Drude model behavior,
where the Drude model conductivity is given by

σ =
ε0ω

2
pτ

1− iωτ
. (13)

τ is the characteristic carrier scattering time and ωp is the
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TABLE I. Summary of experimental results on doped bulk silicon under THz radiation, as obtained from THz-TDS,
chronologically ordered. Values in bold were calculated for comparison purposes, based on data from the referenced work.
The table shows the conductivity model assumed in the original work; the material dc characteristics including resistivity,
doping density, and mobility; the fitted THz characteristics including doping density and mobility; the percent change from dc
to THz doping density and mobility values, and the data citation. In most cases, both n0 and µ are taken as fitting parameters;
Ref. [82] assumes known µ for all calculations.

Model dc THz Ref.
ρ (Ω cm) n0 (cm−3) µ (cm2/Vs) n0 (cm−3) µ (cm2/Vs) ∆n0 % ∆µ %

Drude 1.15 4.6×1015 1302 3.3×1015 1680 28 -29 [77]
Drude 8.1 7.0×1014 1349 4.2×1014 1820 40 -35 [72]
Drude 8.15 5.2×1014 1352 3.4×1014 2340 34 -73 [78]
Drude 0.21 3.2×1016 1083 2.1×1016 1420 34 -31 [78]

Cole-Davidson 8.15 5.2×1014 1352 4.0×1014 2000 23 -47 [78]
Cole-Davidson 0.21 3.2×1016 1083 2.3×1016 1280 28 -18 [78]

Drude 1.1 3.8×1015 1350 4.9×1015 1350 -29 0 [82]
Drude 2.5 1.7×1015 1350 1.8×1015 1350 -6 0 [82]
Drude 10.0 4.2×1014 1350 6.7×1014 1350 -59 0 [82]
Drude 1.1 4.1×1015 1306 3.7×1015 1560 12 -19 [74]
Drude 0.14 4.0×1016 1036 3.5×1016 1280 14 -17 [80]

plasma frequency. If we consider only the data in Table I
in which carrier density and mobility are taken as fitting
parameters, the fit to the Drude model requires assumed
doping densities that average ∼27% lower than those
calculated from the known dc resistivity, and calculated
mobilities ∼32% higher than those found at dc . This
suggests that τ energy-dependence sufficiently impacts
THz-frequency properties that it must be accounted for
by the conductivity model [72]. Several other models
have been developed to incorporate τ energy dependence,
with promising results [72, 78].

The ill-fit of the Drude model to doped silicon at THz
frequencies, and the absence of another well-accepted
model, makes prediction of THz-frequency materials
properties of arbitrarily doped silicon difficult. As
demonstrated below, the EMC-FDTD method has the
potential to provide detailed materials characterization
of doped silicon at THz frequencies.

B. Simulation domain

For both EMC and FDTD we use two-dimensional
(2D) computational domains defined in the x − y plane
(Fig. 8). The EMC domain is filled with (001) doped
silicon with doping density n0 = 1017 cm−3. The typical
simulation carrier ensemble size is O(105). To permit
examination of the interaction between these carriers and
propagating THz-frequency electromagnetic plane waves,
we embed the EMC domain into an FDTD domain.

The FDTD simulation testbed is a semi-infinite half
space of doped silicon (Regions B and C in Fig. 8) and
a semi-infinite half space of air (Region A in Fig. 8).
Region A is assigned a dielectric constant of 1 and zero
conductivity. A dielectric constant of 11.8 is assigned to

Regions B and C. Region C is filled with an assumed
value for the continuous bulk dc conductivity of doped
silicon, σ̄. Region B contains the embedded EMC
domain; the current ~J in Eq. (6) is generated solely from
the EMC.

The EMC formulation accounts for the smooth
material interface by enforcing specular reflection of
carriers at the left and right boundaries of the domain.
The top and bottom boundaries are given periodic
boundary conditions, to allow unrestricted carrier motion
in the vertical direction. Care must be taken at the edges
of the coupled region to ensure that EMC current density
does not extend beyond the coupled region for any charge
assignment scheme.

To allow finite-grid representation of an infinite space,
we treat FDTD domain boundaries with CPML absorb-
ing boundary conditions [5, 58]. Outward-propagating
waves that reflect from the domain boundary are
attenuated within the CMPL by more than 80 dB,
so that the main grid is electromagnetically isolated
from the domain boundary to very good approximation.
We assume a TEz mode for the electromagnetic
wave. Plane waves are introduced with a propagation
direction normal to the interface via the AFP-TFSF
formulation [53–55]. In this polarization, the incident
plane wave will excite y−directed currents within the
EMC-coupled region. The periodic boundaries on the top
and bottom edges of the EMC domain and the uniform
incident field allow bulk EMC simulation within the finite
domain. Fig. 7 shows the full simulation flowchart for a
coupled EMC-FDTD solver.

Fig. 8 shows the 2D spatial distribution of the
Ey phasor amplitude, extracted via discrete Fourier
transform over several periods of electromagnetic wave
oscillation. The field amplitude is attenuated as a
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function of depth in both Regions B and C. Amplitude
decay in region C corresponds to that expected for
a dielectric with conductivity σ̄. No conductivity
is enforced in the coupled Region B; field decay in
this region results from the carrier-field interaction,
exhibiting the macroscopic phenomenon of the skin
effect.

FIG. 7. Flowchart for the combined EMC-FDTD simulation
modeling tool.

A CB

FIG. 8. Amplitude of Ey field phasor extracted by DFT
over several periods of electromagnetic wave oscillation,
where white corresponds to high field amplitude and black
corresponds to low field amplitude. The materials interface is
indicated by the vertical gray line. The section of the domain
shown here lies within the AFP-TFSF boundary; an incident
plane wave is sourced from the left boundary. Region B is the
EMC-FDTD coupled region, whose boundary is marked by a
solid gray box, and Regions A and C are pure-FDTD doped
silicon.
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FIG. 9. Average noise of Ey in the EMC-FDTD coupled
region for several values of electron ensemble size and grid
cell size. Enoise

y is calculated as
√
〈|Ey|2〉 − |〈Ey〉|2 and is

normalized by |Ey| at the material interface. ∆xref ≈ 400 nm
is a reference grid cell size. Increasing the size of the ensemble
reduces noise, as expected, but increasing the grid cell size
produces a much larger improvement.

Noise in the Ey phasor amplitude in Region B is
caused by thermal electron motion; Ex, Jx and Jy

also exhibit minor fluctuations in phase and amplitude.
Transient fields, continually sourced by this noise,
propagate to the grid boundary and are attenuated in
the CPML. Without high-quality absorbing boundary
conditions these simulations would suffer from the same
continually increasing noise level that affected the early
simulations described in Sec. I. To reduce the impact
of this noise on conductivity calculations, we take
spatial averages over small regions surrounding each grid
location in the extracted phasor quantities. Increasing
the size of the averaging regions decreases phasor
quantity noise. The averaging region size must not be
increased beyond∼1/20th of the smallest electromagnetic
feature of interest.

These noise-reduced phasor quantities are used in the
effective linear-regime conductivity calculation,

σ̆(ω) =
~E(ω) · ~J∗(ω)

| ~E(ω)|2
. (14)

The real part of σ̆ corresponds to power dissipation and
is evidenced as the phasor amplitude decay in Fig. 8. The
imaginary part of σ̆ corresponds to phase shift between
~E and ~J resulting from the delay in material response
to applied fields. As the electromagnetic oscillation
frequency approaches the carrier scattering rate, we
expect the delay in material response to applied fields
to increase.

Fig. 9 shows the variance of |Ey| in Region B as a
function of electron ensemble size Ne for several grid
cell sizes ∆x. As expected, larger carrier ensembles
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FIG. 10. Extracted conductivity with varied averaging
region size, electron ensemble size, and surrounding bulk
conductivity. N0 is a reference ensemble size, typically
O(105). Larger averaging region size leads to convergence
in σ̆. Level of impedance mismatch between Regions B and
C, examined through modified σ̄, is associated with line type.
See text for discussion.

show decreased phasor quantity noise, at the cost of
an increased computational burden. Fig. 9 shows
dramatic noise reduction for increased ∆x. This
improvement directly contrasts the EMC-Poisson solver
accuracy requirements, which favor smaller grid cells for
improved electrostatic calculations. The EMC-FDTD
solver achieves significant noise reduction for larger ∆x
by including a larger number of carriers in each Jx and
Jy grid point calculation.

Fig. 10 shows σ̆ as a function of phasor quantity
averaging region size, for several values of ensemble
size and several levels of impedance mismatch between
Regions B and C. As the averaging regions size is
increased, σ̆ converges. Increased ensemble size also leads
to convergence in σ̆, indicating correspondence between
decreased phasor quantity noise and convergence in σ̆.

Finally, Fig. 10 allows examination of the impact of
impedance mismatch between the EMC-FDTD coupled
Region B and the surrounding pure-FDTD Region C.
In any single test, the conductivity σ̄ defined in Region
C may not match the conductivity exhibited by the
EMC-FDTD coupled region. The resulting impedance
mismatch will cause waveguiding and back-reflections
within the coupled region. We tested the effect of these
reflections on σ̆ by comparing extracted conductivity
values for several tests where σ̄ was varied through
three values, spanning σ̆. Fig. 10 shows the results of
this experiment; σ̆ is insensitive to impedance mismatch
between Regions B and C.

C. Comparison with experiment

We compare the complex σ̆ with experimental results
obtained via reflecting THz-TDS [78]. The dc resistivity
of the n-type doped silicon sample used is given as
8.15 Ωcm, corresponding to n0 ≈ 5.5 × 1014cm−3 [86].
This doping density is used in the EMC-FDTD solver,
and the pure-FDTD σ̄ is modified to match the
corresponding dc conductivity.

The analytical best fit of the Cole-Davidson
model to experimental data is given by Jeon and
Grischkowsky [78]. The Cole-Davidson fit can be
regarded as a faithful representation of the experimental
data. Figure 11 compares the EMC-FDTD-extracted
doped-silicon conductivity to the best fit to experimental
results. The global solver provides results which
agree well with experiment. The real part of the
conductivity shows excellent agreement, especially at
higher frequency. The imaginary component of the
conductivity shows good agreement, even though small
phase errors in the computationally and experimentally
extracted conductivities would show up here. In the
numerical tests, n0 is sufficiently low that the binary
Coulomb interactions between individual carriers should
not substantially contribute to the observed conductivity,
but because the plasma frequency ωp is O(THz), plasmon
scattering may be important.

This preliminary work on a combined EMC-FDTD
solver demonstrates its utility in characterization of
doped semiconductors at THz and sub-THz frequencies.
We have shown that this global numerical technique
provides conductivity predictions that match well to
experiment. The EMC-FDTD solver exhibits improved
accuracy for larger ∆x, in contrast to traditional EMC-
Poisson accuracy requirements. The EMC-FDTD global
solver shows promise as a method for full characterization
of doped silicon at THz frequencies.

IV. GLOBAL MODELING OF MICROWAVE
TRANSISTORS

Microwave semiconductor device analysis in the
small-signal regime requires a full description of the
quasi-static dc field distribution prior to the application
of a small ac modulation. In the global model developed
recently by Ayubi-Moak et al. [37–41], dc device behavior
is obtained first, as the steady-state result of the CMC-
Poisson simulation at a given bias point. The calculated
dc current, ~Jdc, is used to source the dc Maxwell’s curl
equations,

∇× ~Edc = 0, (15a)

∇× ~Hdc = ~Jdc. (15b)

An ac excitation source is then applied to the device
via a source plane approach described in the next section.
The resulting time-varying distributions of the EM fields
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FIG. 11. THz conductivity of doped bulk silicon. The
EMC-FDTD conductivity (circles) agrees well with the
experimental data of Ref. [78] (presented here via a faithful
Cole-Davidson analytical fit, solid curve).

are then computed by solving the discretized Maxwell’s
equations over the entire FDTD grid (repeated here for
convenience)

∂ ~H

∂t
= − 1

µ0µr

(
∇× ~E

)
, (16a)

∂ ~E

∂t
=

1
ε0εr

(
∇× ~H

)

=
1

ε0εr

(
∇× ~Hac + ~Jdc − ~Jtotal

)
, (16b)

where ~Jtotal is now the total current density (i.e. the ac
part plus the dc part) computed by the CMC solver after
a specified number of particle free-flight time steps. In
Eqs. (16a) and (16b), a lossless medium has also been
assumed for simplicity. Note that during the first FDTD
time step of the full-wave simulation in which the ac
excitation is applied, ~Jtotal is exactly equal to ~Jdc.

Following the individual update of each field
component, the new ac fields are then added to the stored

FIG. 12. Flowchart of coupled CMC/FDTD device simula-
tor [38].

dc fields and the updated total field is passed back into
the CMC solver and used to compute the total Lorentz
force, evolve the particle velocities, and recalculate the
total current. Once computed, the new current density
in each grid cell is passed back to the FDTD solver at
the next full-wave time-step and the process is repeated
for the remainder of the full-band/full-wave simulation,
as illustrated in Fig. 12.

A critical component in the full-wave simulation is
the manner in which small-signal voltage perturbations
are applied to the electrodes on the FDTD grid. This
can be accomplished by applying the proper transverse
electric field distribution to a source plane at the front
end of the simulation domain. The applied electric
field distributions correspond to the solution of Poisson’s
equation over a 2D source plane for a set of applied
contact voltages. This static field distribution is then
modulated by the appropriate time signature of the
desired excitation function. The resulting distributions
are then applied as soft sources to the corresponding field
components at each FDTD time step during the full-wave
portion of the total simulation.

The source plane is located along a cross-section of
the 3D structure, as illustrated in Fig. 13, for a simple
coplanar waveguide (CPW) geometry. The FDTD grid
is extended both in the front of and to the back of the
actual active device region. Both the passive front-end
and back-end sections function as lossless transmission
lines. The passive front-end section allows the sourced
excitation wave to develop into the proper waveguide
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FIG. 13. Example of simulation domain used in a 3D
CMC/FDTD simulation showing passive and active sections.

mode prior to its interaction with the active device.
Both passive sections are defined as extensions of the
intrinsic undoped semiconductor material beyond the
physically modeled electrode terminations in the CMC
simulator. The passive sections separate the active CMC
device model from the CPML layers (not shown in figure)
which truncate the domain. The domain region above
the active device and passive regions is filled with free
space and separates the top of the circuit from the upper
absorbing boundary layer. The excitation source in Fig.
13 is applied to the gate electrode of a simple three-
terminal device. In this illustration, the source electrode
is grounded and the drain is left floating (i.e. not
grounded). The excitation signal is shown being applied
to the gate. Not shown in the figure is the ground plane
located directly below the substrate.

A. Ultrafast device simulation and results

The first direct measurement of femtosecond ve-
locity overshoot in GaAs and InP was performed by
Leitenstorfer et al. [87], by capturing transient THz
radiation produced by optically-generated electron-hole
pairs in pin diodes. This work motivated the subsequent
numerical results of the transient response in GaAs and
InP by Wigger et al. [88], which used CMC/Poisson
transient simulation (basically, the transient electric field
was assumed to satisfy Poisson’s equation at every point
in time, and magnetic field was neglected). Here we
present the application of the coupled CMC/FDTD
to the simulation and capture of radiated EM fields
emanating from ultrafast, high-frequency devices [37].

The test structure was a 3D slice of intrinsic GaAs
500 nm long and 100 nm wide in both transverse
dimensions. Contacts were simulated on each end of
the structure allowing for the necessary reverse bias
across the pin diodes used in the original experiments
in [87]. A 500 nm long air region was added to the left

FIG. 14. Cross section of the structure used in the THz
simulations.

end of the structure and the entire simulated domain
was surrounded by a split-field perfectly matched layer
(PML) absorbing boundary region ten cells thick in
each direction. A 500 nm long square filament with a
cross-sectional area of 400 nm2 was centered inside the
GaAs region. This filament represented the region over
which simulated electron-hole pairs were injected into the
device structure. Fig. 14 shows a 2D cross-section of the
test structure. This device was simulated using a uniform
mesh of 10 nm spaced grid cells. This spatial dimension
allowed for a maximum time step of only 0.0016 fs and
was the limiting factor in these simulations.

Two sets of simulations were performed on the test
structure. Both simulations were run for a total of 350 fs.
In each case, 25,000 electron-hole pairs were injected into
the filament region of the device with a peak injection
concentration of 5× 10−14cm−3 occurring 20 fs after the
start of the simulation. In the first experiment, a bias
of -5 V was applied across the device, corresponding to
a uniform electric field of 100 kV/cm. In the second
experiment, the bias voltage was decreased to -1.2 V,
corresponding to a uniform electric field of 24 kV/cm.
Because each simulation demonstrated a similar set of
results, only the details of the 100 kV/cm simulation are
presented and discussed here.

During runtime, snapshots of the electric and
magnetic field components were taken over a cross section
of the y − z plane at distances of 50 nm (Fig. 15)
and 480 nm (Fig. 16) from the left contact. These
points were chosen in order to capture the near and
far-field characteristics of the electric fields surrounding
the device. In Fig. 15, a snapshot of the Ey field
was taken approximately 1.25 fs after the peak of the
injection pulse. It is clear from the contour plot that
the field is dipolar in nature. This behavior is actually
the expected response from an elemental oscillating
electric or Hertzian dipole in which the magnitude of
the electric field intensity is directly proportional to the
dipole moment in the longitudinal direction. Under
the influence of a high, uniform electric field, electrons
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FIG. 15. Snapshot of Ey taken 50 nm from the left contact,
1.25 fs after the peak of the injection pulse. The observed
dipolar nature of the pulse is characteristic of the near-field
region.

FIG. 16. Snapshot taken 480 nm from left contact of
transverse Ey component of the electric field 74 fs after the
peak of the injection pulse . This wavefront resembles a plane
wave (TEM wave) in the far field region.

and holes are accelerated in opposite directions, creating
an electric dipole with a constantly increasing dipole
moment. This displacement of both electrons and holes
versus simulation time is plotted in Fig. 17 and validates
the notion of an oscillating dipole. When one moves into
the far-field region (Fig. 16) the wavefront becomes TEM
or plane wave-like in nature. The resulting drift velocities
of both electrons and holes are shown in Fig. 18. Peak

FIG. 17. Displacement of electrons and holes in the device
versus time for the simulation run at 100 kV/cm.

FIG. 18. Drift velocities of electrons and holes versus time for
the simulation run at 100 kV/cm.

overshoot velocities of 7.4 × 107cm/s for electrons and
−1.5 × 107cm/s for holes were determined and are in
good agreement with those reported in [88] using just
the CMC/Poisson device simulator.

B. Single 0.1 µm gate GaAs MESFET

The coupled device simulator has also been applied to
the simulation of a simple 3D MESFET. In [38], a 0.1 µm,
single-gate, 3D MESFET was modeled using a version
of the coupled simulator which used a conventional
3D FDTD with split-field PML absorbing boundary
conditions. Fourier decomposition was used to study
the small signal response of this simple device structure.
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TABLE II. Parameters used in device simulation.

drain/source contacts 0.5 µm
source-gate separation 0.4 µm
drain-gate separation 0.4 µm
device length 2.0 µm
device width 125 µm
active layer thickness 0.1 µm
active layer doping 2×10−17 cm−3

Schottky barrier height 0.8 V
dc gate-source voltage -0.5 V
dc drain voltage 0.5 V
ac excitation source peak voltage 0.1 V

The basic layout of the device is similar to the generic
layout illustrated in Fig. 13 but with a 0.1 µm gate
length. Specific device dimensions are given in Table II.
An 80 × 35 × 25 uniform mesh was used. The dc
bias point chosen placed the active device well into the
saturation region of transistor operation. A Gaussian
pulse excitation with a 3 ps pulse width was applied
over a 20 ps period to both gate and drain electrodes
separately resulting in a frequency resolution of 50 GHz.
The source-gate (input voltage) and source-drain (output
voltage) were computed just forward of the source plane
and at 125 µm respectively, and stored at each time step.
These voltages were computed by simply integrating the
x-directed electric field component along a line between
the source-gate and source-drain regions as follows:

V = −
∫ b

a

Ex · dl, (17)

where b− a represents the distance between source-gate
and source-drain regions. The corresponding voltage gain
versus frequency was computed by taking the ratio of the
Fourier transforms of these input and output voltages as

Voltage gain (ω) = 20 log
{

Vout (ω, zi)
Vin (ω, zo)

}
, (18)

where zi and zo represent the distributed and character-
istic impedances and Vin and Vout are the corresponding
input and output voltages. The result of this calculation
is given in Fig. 19.

In addition, the S-parameters were also computed
over a range of frequencies by taking the ratio of the
Fourier transforms of incident and reflected voltages on
port 1 (source-gate) and port 2 (drain-source) in the
front passive section just before the active device region.
Using these parameters, the forward current gain, h21,
was computed via

FIG. 19. Computed voltage gain versus frequency for 0.1 µm
gate MESFET using a coupled CMC/conventional FDTD
simulator. A maximum cutoff frequency of 125 GHz is
determined for a device width of 125 µm.

FIG. 20. Computed current gain versus frequency for 0.1 µm
gate MESFET using a coupled CMC/conventional FDTD
simulator. An estimate for the maximum cutoff frequency
of 170 GHz is determined for a device width of 125 µm.

h21 =
−2S21

(1− S11) (1 + S22) + S12S21
. (19)

The result of this calculation is plotted in Fig. 20. A
cutoff frequency of approximately 170 GHz was estimated
from the curve.

This work demonstrated that an EM wave solver
could be directly coupled to a full-band particle-based
simulator for the global modeling of a microwave transis-
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FIG. 21. Cross-section of simulated 3D dual-gate MESFET
device.

tor. The computed voltage gain was approximately 36%
larger than that predicted by previous global modeling of
a similar device using a hydrodynamic-based simulator
coupled to a conventional FDTD [6, 89–92]. This
difference is attributed in part to the statistical noise
inherent to particle-based solvers and also to the specific
manner in which the input and output ports of the
simulated structure were defined. This latter issue will be
discussed in more detail in the next section and addressed
through the adoption and implementation of a typical
ground-signal-ground (GSG) device layout.

The coupled simulator used in this case employed a
conventional FDTD. It was, therefore, severely limited by
the Courant stability requirement. Although the initial
dc bias point solution could be obtained using a coupled
CMC/Poisson time step of 5 fs, the full-wave portion of
the total simulation was limited to a maximum FDTD
time step of 0.04 fs or about two orders of magnitude
smaller than that necessary in the CMC solver. This
added computational burden has is resolved with the
implementation of the ADI-FDTD method, as described
below.

C. Dual-finger 0.2 µm gate GaAs MESFET

The 2D cross-section of the 3D dual-gate GaAs
MESFET simulated using the CMC/ADI-FDTD coupled
simulator is shown in Fig. 21. This structure is simply a
combination of two single-gate MESFETs.

A 141× 25 uniform grid mesh was used along the x−
and y−directions, respectively. The choice of a uniform
grid was based upon the fact that both the CMC and
FDTD solvers operate on the same grids during the
simulation. Although the CMC grid is embedded within
the total FDTD grid, its dimensions and cell spacings
are matched to those used in the full-wave portion of the
simulation. The use of a uniform grid mesh in the FDTD
solver helps to minimize the numerical dispersion due to
grid error. The standard ADI-FDTD algorithm suffers
from the build up of both local and global error over

FIG. 22. Snapshots at (a) 2.5 ps, (b) 5 ps, (c) 7.5 ps, (d)
10 ps, (e) 12.5 ps and (f) 15 ps of the magnitude of Ex for
the excitation applied to the gate.
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FIG. 23. Set of calculated S-parameters for the passive
structure.

time due to truncation errors made in the approximation
of the derivative operator.

1. Full-wave analysis of the passive structure

A full-wave simulation of the passive device structure
was performed in order to generate a full set of S-
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parameters for comparison with those obtained during
the coupled simulations discussed in the next section. In
this simulation, the ADI-FDTD algorithm with CPML is
used. The simulation was performed using a 141×60×35
uniform cubic mesh. These simulations were run using
an FDTD time step of 5 fs. A differentiated Gaussian
pulse with a halfwidth of 1.5 ps is used as the primary
excitation source in the passive ac simulation. It is
applied at 3 cells away from the CPML on either the
gate or drain.

Snapshots of the wave propagation resulting from the
excitation source being applied to the gate are given in
Fig. 22. The calculated S-parameters are shown in Fig.
23.

2. Full-band/full-wave analysis of the coupled device
structure

A fully coupled 3D simulation of the structure shown
in Fig. 21 was performed using the same parameters
and excitation source as above. At the start of the full-
wave simulation, the CMC device simulation is allowed
to run coupled to the full-wave solver for 5 ps prior to the
application of the excitation source pulse. This allows a
finite amount of time for the resulting ac transients to
propagate throughout the FDTD grid. These transients
are due to the addition of the time-varying magnetic field
into the calculation of the total Lorentz force in the CMC
portion of the coupled simulator. This results in a new
steady state (quasi-static dc condition).

Snapshots of the resulting wave propagation are
shown in Fig. 24. At the beginning of the simulation,
the electric field is localized within the active region
of the domain as shown in the figures. The inclusion
of the magnetic field results in a redistribution of the
fields out into the passive regions of the structure. The
carrier-wave interaction is also apparent in the localized
or granular nature of the wavefront as it propagates
through the active portion of the domain. and reflects off
the open-ended terminations of both the gate and drain
contacts.

The full set of calculated S-parameters are shown in
Fig. 25. The corresponding current gain h21, calculated
according to Eq. (19), is plotted in Fig. 26. The
unilateral power gain (UPG) was computed using the
following expression

UPG =
|S21|2∣∣∣

(
1− |S11|2

)(
1− |S22|2

)∣∣∣
2 . (20)

and the resulting curve plotted in Fig. 27. The cutoff
frequency (corresponding to unity current gain) and fmax

(corresponding to unity UPG) are readily extracted from
Figs. 26 and 27.

In these simulations, both the gate and drain contacts
were assumed to be simply transmission lines with

FIG. 24. Snapshots at (a) 0.15 ps, (b) 7.35 ps, (c) 9.85 ps,
(d) 15.85 ps, (e) 18.85 ps and (f) 21.85 ps, of the magnitude
of Ex for the excitation applied to the gate.

10
−1

10
0

10
1

10
2

−100

−80

−60

−40

−20

0

20

Frequency (GHz)

S
11

  (
dB

)

10
−1

10
0

10
1

10
2

−100

−80

−60

−40

−20

0

20

Frequency (GHz)

S
12

  (
dB

)

10
−1

10
0

10
1

10
2

−100

−80

−60

−40

−20

0

20

Frequency (GHz)

S
21

  (
dB

)

10
−1

10
0

10
1

10
2

−100

−80

−60

−40

−20

0

20

Frequency (GHz)

S
22

  (
dB

)

FIG. 25. Set of calculated S-parameters for the active
structure.

characteristic impedances matched to that of the source
and load. The CPML used to truncate the domain was
used as a substitute for the lumped circuit elements that
would represent the source and load impedances. This is
an over-simplification of the problem and does not fully
account for the true impedances of the discontinuities
present in actual fabricated devices.
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10
0

10
1

10
2

−50

−40

−30

−20

−10

0

10

20

30

40

50

Frequency (GHz)

U
ni

la
te

ra
l P

ow
er

 G
ai

n 
(d

B
)

f
max

 ~ 2.5 GHz

FIG. 27. Unilateral power gain (UPG) versus frequency.

V. SUMMARY AND OUTLOOK

We have reviewed recent advances in the global
modeling of carrier-field interaction in semiconductor
materials and devices using coupled EMC-FDTD
simulation tools. Of special interest are applications
at high-microwave and THz frequencies, as doped
semiconductor plasma frequencies and characteristic
carrier scattering rates fall into this range. Therefore,

common simplifications used to allow independent
consideration of the particle and the field dynamics
are not justified; rather, efficient modeling tools that
comprehensively couple carrier transport with full-wave
electrodynamics are necessary to provide an accurate
description of materials properties.

Coupled EMC-FDTD simulation tools combine two
highly accurate and versatile techniques, and they
present state-of-the-art in global modeling. The coupled
simulation was illustrated on two types of THz-frequency
excitation: electromagnetic irradiation (Sec. III) and
ac biasing (Sec. IV). We discussed the stability
and accuracy requirements for both. In particular,
we presented simulation data for the THz-regime
conductivity of doped bulk silicon under irradiation, and
showed a very good agreement of the calculated complex
conductivity with experimental data (Sec. III). In Sec.
IVA, ultrafast carrier dynamics and radiation patterns
in thin intrinsic GaAs are faithfully captured via a CMC-
FDTD simulation (CMC being an outgrowth of ensemble
Monte Carlo), while the same technique offers a detailed
numerical insight into the ac response of high-speed
GaAs MESFETs (Sec. IV B).

Efficiency of global modeling tools will continue
to improve through algorithm development and paral-
lelization. Further developments likely include analyses
of heating in high-speed devices by adding thermal
transport to the coupled carrier-field simulation. Also,
growing interest in high-frequency behavior of quantum
structures may stimulate coupling of quantum transport
techniques (Wigner-function simulation or nonequilib-
rium Green’s functions) with full wave electrodynamics.
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