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Abstract Electrons in the active region of a nanostructure
constitute an open many-body quantum system, interacting
with contacts, phonons, and photons. We review the basic
premises of the open system theory, focusing on the com-
mon approximations that lead to Markovian and non-Mar-
kovian master equations for the reduced statistical operator.
We highlight recent progress on the use of master equations
in quantum transport, and discuss the limitations and poten-
tial new directions of this approach.
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1 Introduction

The term master equation traditionally refers to differential
equations that describe the time evolution of the probability
that a given physical system will occupy a set of allowed
states. These equations are typically first order in time and
often, but not necessarily, linear in the probabilities. Nowa-
days, the term master equation is used more broadly: in the
theory of few-level open systems, it refers to equations that
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describe the evolution of the open system’s statistical oper-
ator (usually called the reduced statistical operator or the
reduced density matrix) in the presence of coupling with an
environment that has a large, perhaps infinite, number of
degrees of freedom and is responsible for the irreversibil-
ity in the open system’s evolution [1, 2]. Master equations
are sometimes obtained as an “educated guess” (i.e. phe-
nomenologically), but can often be derived from the gen-
eral framework of the open system evolution and a few rea-
sonable assumptions. Master equations can be divided into
Markovian master equations, in which temporal evolution
of the reduced statistical operator does not depend on its past
but only its current state, and non-Markovian equations, in
which the so-called memory effects play an important role
and involve information about the evolution of the environ-
ment. How to best quantify non-Markovian effects in open
quantum systems [3–6] and how to experimentally control
the information flow between the system and the environ-
ment, potentially driving the system between the Markovian
to the non-Markovian regime [7], are currently very active
areas of inquiry.

Electronic systems in semiconductor nanostructures are
open quantum systems, exchanging particles and informa-
tion with the rapidly dephasing reservoirs of charge, of-
ten referred to as contacts, and possibly interacting with
phonons or photons as well [8]. In the open system the-
ory, environments are commonly considered to be bosonic,
which is fine for electrons interacting with light or lattice
vibrations. However, electronic transport in the presence of
contacts is a case of a fermionic open system coupled to
fermionic reservoirs, which is a largely unexplored problem
[9, 10]. When referring to electronic transport calculations,
the use of the term master equation falls in two camps: on
the one hand, we have few-level models (e.g. the resonant-
level models used for quantum dots [11]) for which master
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equations continue to refer to the dynamics of the reduced
statistical operator. On the other hand, if we strive to account
for the generally continuous single-particle energy spectrum
of an electron in a nanostructure (e.g. when capturing cur-
rent in structures without resonances) and the fact that many
electrons are available to populate them, then calculating the
full many-body reduced statistical operator becomes both
intractable and unnecessary, as a great deal of information
can be obtained from the single-particle quantities. In this
case, master equation can refer to the equations for the time
evolution of the single-particle density matrix (e.g. Redfield-
type equations [12]) or just its diagonal terms (e.g. the Pauli
master equation [13]).

In this paper, we review the basic premises and recent
progress on the use of Markovian and non-Markovian mas-
ter equations in the description of quantum electronic trans-
port. In Sect. 2, we present the basics of the open sys-
tem formalism, including the concept of complete positiv-
ity of a dynamical map. We discuss microscopic derivations
of Markovian master equations in Sect. 3, focusing on the
weak-coupling limit, and follow with examples from quan-
tum transport in Sect. 4. In Sect. 5, we overview general
features of non-Markovian master equations and present the
Nakajima-Zwanzig projection operator technique. Exam-
ples of non-Markovian master equations for time-dependent
quantum transport are given in Sect. 6. A summary and out-
look conclude this paper in Sect. 7.

2 General open system formalism

Consider a quantum-mechanical system S interacting with
an environment E. This composite S + E system is gener-
ally described by the full statistical operator that, like other
operators, lives in the Liouville space, which is (in the case
of finite systems) isomorphic to the square of the composite
Hilbert space, H2 = (HS ⊗ HE)2. Here, HS and HE are the
Hilbert spaces while H2

S and H2
E are the Liouville spaces

of the system and environment, respectively. Operators act-
ing on the Liouville space are often called superoperators.
If S + E is closed, the dynamics of its statistical operator ρ

is given by the Liouville equation (in the units of � = 1)

dρ

dt
= −iLρ = −i[H,ρ]. (1)

L is the Liouville superoperator and H the total S + E

Hamiltonian, generally of the form H = HS ⊗ IE + IS ⊗
HE + Hint. The integral form of the Liouville equation is

ρ(t) = U(t, t0)ρ(t0)U
†(t, t0), (2a)

U(t, t0) = T exp

(∫ t

t0

−iH(t)dt

)
, (2b)

with T denoting time ordering. In the case of a time-in-
dependent H , U(t, t0) = exp(−iH(t − t0)).

Assume that we are interested only in the evolution of S.
Its statistical operator can be obtained by tracing out the E

degrees of freedom, i.e.,

ρS = TrE(ρ). (3)

S is often referred to as the reduced system and ρS as the
reduced statistical operator or the reduced density matrix.
We will use the term reduced statistical operator, because
the term density matrix is usually reserved for the single-
particle quantity in quantum transport studies.

While the dynamics of S + E, a closed system, is uni-
tary, the dynamics of S is not. If the environment has a large
number of degrees of freedom, on the timescales accessible
in experiment the evolution of the reduced system S effec-
tively becomes irreversible. Quite generally, the dynamics
of the reduced statistical operator is given by

ρS(t) = TrE
(
U(t, t0)ρ(t0)U

†(t, t0)
)
, (4a)

dρS

dt
= −iTrE Lρ = −iTrE[H,ρ]. (4b)

The central goal of the open system theory is to obtain the
evolution of the (relatively small) reduced system S while
minimizing the information that has to be gathered about the
(relatively large) environment E. This quest is understand-
ably very difficult, and approximations must be employed to
yield tractable equations.

A first major simplification is assuming that, at some
point in the S + E evolution, the S and E were decoupled.
It is assumed that, up until a certain point in time, usually
designated as t = 0, S and E were mutually isolated, non-
interacting, and therefore the initial ρ is of the uncoupled,
tensor-product form,

ρ(0) = ρS(0) ⊗ ρE(0). (5)

Thereafter, the interaction is turned on, presumably adiabati-
cally. (A reader interested in the field of nanoelectronics can
immediately ask if this assumption is ever satisfied in elec-
tronic systems, and the answer is “sometimes.” For instance,
it can be considered true when we have high tunnel barriers
between the active region (S) and contacts (E) in a nanos-
tructure, and have let the active region and environment each
relax on its own, with minimal tunneling between them.)

The assumption of an uncorrelated initial state is a very
appealing one to adopt, because it guarantees [14] the exis-
tence of a subdynamics (also known as reduced dynamics),
i.e. it guarantees that the evolution of the reduced statistical
operator can in principle be fully described within H2

S . In
other words, the existence of a subdynamics means there ex-
ists a generally nonunitary evolution superoperator W (t,0),
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such that

ρS(t) = W (t,0)ρS(0). (6)

W (t,0) is often referred to as a dynamical map. In gen-
eral, there exists a non-Hermitian generator of the dynam-
ical map, K(t), which satisfies

W (t,0) = T

∫ t

0
K

(
t ′
)
dt ′; K(t) = dW

dt
. (7)

The differential equation of motion for a subdynamics can
be written as

dρS

dt
= K(t)ρS(t). (8)

Clearly, it is practically impossible to obtain K and W
from first principles, and approximations are commonly
made to the structure of K. Generator K should be such
that the resulting evolution does not violate the unit trace
or the positivity of ρS . While the former is quite easily sat-
isfied (any generator that acts as a commutator or a sum
of commutators will preserve the trace of ρS ), the latter is
generally a tall order and is, in fact, not fulfilled by many
common approximations. Complete positivity of a dynami-
cal map [15] is a stronger criterion than positivity (i.e. re-
quiring that the map preserve the positivity of the statistical
operator). Namely, if you have two systems whose evolution
is such that the density matrix of each remains positive (i.e.
the evolution operators W for each subsystem are positive
maps), it is not guaranteed that the composite map (their ten-
sor product) will be a positive map, i.e. it is not guaranteed
that the composite statistical operator will remain positive
throughout evolution. If, however, each one of the evolution
maps is completely positive, then the tensor product is com-
pletely positive. In essence, complete positivity of the evolu-
tion map is a stricter criterion than positivity and necessary
for a successful description of composite systems [1].

A time-independent generator K corresponds to Marko-
vian approximations. Evolution operators W (t, t ′) gener-
ated by a time-independent K form a semigroup, with K
then referred to as the semigroup generator. It has been
shown by Lindblad [16] that the most general case of a gen-
erator of a completely positive Markovian evolution must be
of the form (given in the Schrödinger picture):

KρS = −i[HS,ρS] +
∑

k

γk

([
Ak,ρSA

†
k

] + [
AkρS,A

†
k

])
,

(9)

where γk are nonnegative coefficients. The last term on the
right-hand side is often referred to as the dissipator. The
dynamical map W (t, t ′) generated by K from Eq. (9) is a
completely positive Markovian map. Lindblad’s form of K
is very useful because it enables development of physically
reasonable approximate forms of semigroup generators.

3 Microscopic derivations of Markovian master
equations

In the most general terms, completely positive Markovian
equations for the subsystem dynamics can be obtained in
the weak-coupling limit [17–20], singular coupling limit [2],
and by coarse graining over time [21] (discussed in more de-
tail in Sect. 6.1). In electronic systems, there is also the large
bias limit with contacts that have a constant density of states
[11] (also referred to as the wide-band limit [22, 23]), which
we will discuss separately. The weak-coupling limit is of
particular importance, being applicable to electron-phonon
interaction and electron-contact coupling in the case of tun-
nel barriers, so we discuss it in more detail.

3.1 The weak-coupling limit

The total dynamics in the interaction picture can be written
as (in differential and integral forms)

d

dt
ρ(t) = −i

[
HI (t), ρ(t)

]
, (10a)

ρ(t) = ρ(0) − i

∫ t

0
ds

[
HI (s), ρ(s)

]
, (10b)

where HI (t) is the interaction Hamiltonian in the interac-
tion picture. Putting the integral form in the right-hand side
of the differential form results in dρ(t)

dt
= −i[HI (t), ρ(0)] −∫ t

0 ds [HI (t), [HI (s), ρ(s)]]. Tracing out this equation over
the environment degrees of freedom, we obtain

dρS(t)

dt
= −iTrE

[
HI (t), ρ(0)

]

−
∫ t

0
ds TrE

[
HI (t),

[
HI (s), ρ(s)

]]
. (11)

It is commonly assumed that TrE[HI (t), ρ(0)] = 0. This as-
sumption is often satisfied: for instance, if the initial sta-
tistical operators of the system and environment are grand-
canonical or canonical equilibrium ensembles, they will
contain pairs of the creation and annihilation operators asso-
ciated with the single-particle spectra for S and E. The inter-
action Hamiltonian is usually linear in these operators, i.e. it
is commonly assumed to be of the form (in the Schrödinger
picture)

∑
α Aα ⊗ Bα , where Aα are the system and Bα the

environment operators. Tracing out the product of this inter-
action Hamiltonian with the environment statistical operator
over environmental states gives zero.

In electronic systems, the above approximation is satis-
fied for the electron-phonon interaction (the interaction Ha-
miltonian is linear in phonon creation and annihilation op-
erators) as well as for typical model Hamiltonians that de-
scribe the interaction of the device with the contacts (Hamil-
tonian linear in the contact and device creation/annihilation
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operators) if the evolution starts from equilibrium. How-
ever, if contact-active region electron-electron interaction is
deemed important and is part of the interaction Hamiltonian,
then the term TrE[HI (t), ρ(0)] would survive.

So the equation we are focusing on, which is still exact
provided approximation TrE[HI (t), ρ(0)] = 0 holds, is:

dρS(t)

dt
= −

∫ t

0
ds TrE

[
HI (t),

[
HI (s), ρ(s)

]]
. (12)

The Born approximation assumes that the interaction is
weak, so that the environment is negligibly affected by it
and no considerable S–E correlations arise due to it over
time on the timescales relevant to S. As a result, we can
write ρ(t) ≈ ρS(t) ⊗ ρE(0) and, consequently,

dρS(t)

dt
= −

∫ t

0
ds TrE

[
HI (t),

[
HI (s), ρS(s) ⊗ ρE

]]
. (13)

Equation (13) has memory. The Markov approximation as-
sumes that the interaction magnitude is such that the evolu-
tion will depend only on the present state of the system, not
its prior evolution, so ρS(s) is replaced by ρS(t). This as-
sumption is valid on timescales coarser than the decay time
of environmental correlations [2]. We can switch from s to
t − s, with s now denoting the temporal distance from t ,
and integrate over all values of s, because we expect the
integrand to be negligible for large values of s (i.e. environ-
mental correlations decay rapidly with increasing s), finally
arriving at

dρS

dt
= −

∫ ∞

0
ds TrE

[
HI (t),

[
HI (t − s), ρS(t) ⊗ ρE

]]
.

(14)

Equation (14) is the Redfield equation [24] and it still has
memory.

For an interaction Hamiltonian of the form
∑

α Aα ⊗Bα ,
we can define the Fourier transforms of Aα and Bα based on
the system and environment spectra,

Aα(ω) =
∑

ε

P (ε)Aα P (ε + ω), (15)

where P (ε) projects onto the eigenspace of HS correspond-
ing to eigenvalue ε. As a result, Aα(t) = eiHStAα(ω)e−iHSt

= e−iωtAα(ω). In that case, the interaction Hamiltonian in
the interaction picture becomes HI (t) = ∑

α,ω e−iωtAα(ω)⊗
Bα(t), where Bα(t) = eiHEtBαe−iHEt . Finally, the evolution
of the reduced statistical operator becomes

d

dt
ρS(t) =

∑
ω,ω′

∑
α,β

ei(ω−ω′)tΓαβ(ω)
(
Aβ(ω)ρS(t)A†

α

(
ω′)

− A†
α

(
ω′)Aβ(ω)ρS(t)

) + h.c., (16)

where Γαβ(ω) = ∫ ∞
0 ds eiωs TrE(B†

α(t)Bβ(t − s)). When
the typical timescales for the system evolution, proportional
to |ω − ω′|−1, are much shorter than the expected relax-
ation timescales for the system, the so-called secular ap-
proximation (also known as the rotating-wave approxima-
tion or RWA) can be applied: all terms with ω − ω′ �= 0 are
considered as varying too fast, so that their average contri-
bution on the timescales relevant to S can be neglected. As a
result, we obtain the weak-coupling limit Markovian equa-
tion of motion

d

dt
ρS(t) =

∑
ω

∑
α,β

Γαβ(ω)
(
Aβ(ω)ρS(t)A†

α(ω)

− A†
α(ω)Aβ(ω)ρS(t)

) + h.c. (17)

Let us define

χαβ(ω) = 1

2i

(
Γαβ(ω) − Γ ∗

βα(ω)
)
, (18a)

γαβ(ω) = 1

2

(
Γαβ(ω) + Γ ∗

βα(ω)
)
. (18b)

χ corresponds to the so-called Lamb shift, an effective cor-
rection to the system Hamiltonian of the form

HLS =
∑

ω,α,β

χαβ(ω)A†
α(ω)Aβ(ω). (19)

HLS commutes with HS , so it shares the eigenvectors with
HS and simply corrects the HS energy levels, and is there-
fore not a true dissipative term. γ defines the coefficients of
the true dissipator,

D(ρS) =
∑
ω

∑
α,β

γαβ(ω)
([

Aβ(ω)ρS(t),A†
α(ω)

]

+ [
Aβ(ω),ρS(t)A†

α(ω)
])

. (20)

This dissipator is of Lindblad form, which can be shown af-
ter proving that γαβ is positive definite and diagonalizing it.

If the system Hamiltonian is diagonalized in a basis |n〉
as HS = ∑

n εn|n〉〈n|, then we can derive an equation of
motion for the populations of the eigenstates ρS(n, t) =
〈n|ρS(t)|n〉 as

dρS(n, t)

dt
=

∑
n′

S
(
n,n′)ρS(n, t) − S

(
n′, n

)
ρS

(
n′, t

)
, (21)

S(n,n′) = ∑
αβ γαβ(ε′

n − εn)〈n′|Aα|n〉〈n|Aβ |n′〉 being the
transition rates obtained from Fermi’s golden rule [2]. Equa-
tion (21) is known as the Pauli master equation.
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4 Examples of Markovian master equations in
quantum transport

4.1 Pauli master equation for electron-phonon interaction

An example of the Pauli master equation in the treatment of
electron-phonon interaction in devices is given in the work
of Fischetti [13, 25]. He has shown that, in the Born-Markov
approximation and the van Hove limit (time tends to in-
finity while the coupling strength tends to zero, so that in-
teraction squared times time remains constant and nonzero
during the limiting procedure) [17], the master equation for
the fermionic active region will include the exclusion prin-
ciple, thus generally becoming non-linear for high popu-
lation of states. Scattering states |μ〉 that diagonalize the
single-electron Hamiltonian in the active region can be ob-
tained from the solution of the coupled Schrödinger and
Poisson equations with open boundary conditions. In order
to accurately compute spatially resolved quantities, such as
charge density and potential, in the numerical implementa-
tion, an appropriately dense set of scattering states is ob-
tained through a mapping of scattering states onto standing-
wave-type solutions (details can be found in [25]).

The active region–contact interaction is treated through
a boundary injection/collection term that acts as a source
to the equation. The Pauli master equation in the basis of
scattering states reads

∂ρS(μ, t)

∂t
=

∑
λ

S(μ,λ)ρS(μ, t)
[
1 − ρS(λ, t)

]

− S(λ,μ)ρS(λ, t)
[
1 − ρS(μ, t)

]

+
(

∂ρS(μ, t)

∂t

)
con.

, (22)

where the source term for contact j is given by

(
∂ρ

(j)
S (μ, t)

∂t

)
con.

∼ υ⊥(kμ,j )
[
f (j)(kμ,j ) − ρ

(j)
S (μ, t)

]
.

(23)

Here, f (j)(kμ,j ) is the distribution function in contact j and
υ⊥(kμ,j ) is the perpendicular component of velocity asso-
ciated with state μ and normal to the active region/contact
j boundary. Figure 1 shows a comparison between the Pauli
master equation and ensemble Monte Carlo simulation of a
silicon nin diode.

There is a concern that the Pauli master equation does
not conserve current outside of the steady state. It has been
shown that current is conserved as long as coupling to the
contacts is local [26].

Fig. 1 Calculated potential energy, electron charge density (top
panel), average drift velocity and average kinetic energy (bottom
panel) for an nin silicon diode at 77 K biased to 0.25 V. The solid
lines refer to results calculated using the master equation, the dashed
lines to results obtained using a semiclassical full-band Monte Carlo
simulation employing identical parameters. Reprinted with permission
from Ref. [13], M.V. Fischetti, Phys. Rev. B 59, 4901 (1999). (©) 1999
The American Physical Society

4.2 Markovian equations for system-environment coupling

One of the early contributions aimed specifically at the treat-
ment of transport in electronic systems via master equations
was the paper by Gurvitz and Prager [11]. In their work,
the approximation of high bias has enabled the Markov ap-
proximation. They discuss resonant transfer in mesoscopic
devices, focusing on resonant states as the only relevant
eigenstates of the electronic Hamiltonian in the systems of
interest. The resonant level model is commonly adopted
[22, 27, 28]. The open system has two terminals and is cou-
pled only to the left and right reservoirs, such that the reso-
nant levels are comfortably inside the transport window (the
range of energies between the Fermi levels of the two con-
tacts) and the density of contact states is constant through-
out. Markovian evolution can be obtained in the form of
the density matrix in the basis of the resonant states, with
off-diagonal terms making it different from the phenomeno-
logical rate equations [29]. Around the same time, Stoof
and Nazarov [30] investigated time-dependent resonant tun-
neling via two discrete states in the presence of resonant-
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frequency irradiation based on a phenomenological Marko-
vian master equation for the full statistical operator of this
two-level system.

An enhancement to the work of Gurvitz and Prager [11]
was put forth by Li et al. [31] for a system with multiple
resonances, such as a quantum dot, that is connected to the
reservoirs via barriers through which tunneling is relatively
weak. Starting from the Born approximation and working
with conditional density matrices that correspond to a fixed
number of electrons getting onto the dot at a given time, the
authors are able to derive a Markovian equation of the Lind-
blad form that does not require the wide-band limit [11].

The work of Harbola, Esposito, and Mukamel [32] uses
projection operators (see more in Sect. 5.1 below) to derive
a hierarchy of quantum master equations for the many-body
statistical operators representing the system with a given
number of electrons. They show that Fock-space coherences
between states with different populations do not contribute
to transport to second order in system-environment cou-
pling, but coherences between different many-body states
with the same n are appreciable.

Espostio and Galperin [33] derived a time-local Marko-
vian master equation for molecular transport based on the
Redfield equation, which is nonlocal in time, and supplant-
ing it with a kind of time-reversed Redfield evolution that
enables a self-consistent procedure for deriving the genera-
tor.

Pedersen and Wacker [34] worked in the basis of the
full many-body Hamiltonian and derived Markovian master
equations for few-level systems coupled to a continuum of
lead states. The long-time evolution coincides with the non-
Markovian description based on time-dependent Green’s

Fig. 2 The time-dependent current calculated with the 2vN method
of Pedersen and Wacker [34] (solid line) and with the time-dependent
Green function method [37] (dashed line) in response to steplike mod-
ulation of the bias, with step height μL. The coupling to the left and
right contacts are ΓL = ΓR = Γ/2, the temperature is kBT = 0.05Γ ,
and the half-width of the band is W = 30Γ . Reprinted with permission
from Ref. [34], J.N. Pedersen and A. Wacker, Phys. Rev. B 72, 195330
(2005). (©) 2005 The American Physical Society

functions (see Fig. 2). The evolution they describe is numer-
ically tractable and contains considerably more information
than the rate equations. The approach is referred to as the
second-order von Neumann approach (2vN for short), indi-
cating that the correlations between two tunneling events are
included [35]. Based on a diagrammatic expansion, Karl-
ström et al. recently showed the equivalence between the
2vN approach and the resonant tunneling approximation,
and discussed the limitations of the technique in the calcu-
lation of higher order cumulants [36].

5 Microscopic derivations of non-Markovian master
equations

It is known that the general, completely positive, non-Mar-
kovian evolution of an open system that started in an uncor-
related state (5) can be written as

ρS(t) =
∑

i

Ri(t)ρS(0)R
†
i (t). (24)

This form is usually referred to as the operator-sum rep-
resentation or Kraus representation [38], where Ri(t) are
the unitary Kraus operators. Approximate Kraus maps based
on physically reasonable assumptions have been constructed
[39]. However, in contrast to Markovian evolution, where
the Lindblad equation (9) specifies the required form for a
generator of a completely positive dynamical map, there are
no similarly compact criteria to determine if an approximate
non-Markovian map is completely positive or not.

5.1 Nakajima-Zwanzig and time-convolutionless (TCL)
projection operator techniques

A general and widely applied technique for the derivation of
non-Markovian master equations up to a given order in the
S–E interaction is the Nakajima-Zwanzig projection opera-
tor technique [40, 41]. Commonly, terms up to the second
or fourth order in the interaction are retained, but complete
positivity of the resulting master equations is generally not
guaranteed.

In the S + E Liouville space H2, any environment den-
sity ρE matrix generates a projection operator P whose ac-
tion is given by P x = TrE(x)⊗ρE , x ∈ H2. P is a projector,
meaning that P 2 = P . The range (space of images) of P is
isomorphic to the system Liouville space H2

S . The comple-
mentary projector is Q = 1 − P .

By projecting the Liouville equation (1) onto the ranges
of P and Q, we obtain two equations of motion

i
∂

∂t
P ρ = P L P ρ + P L Qρ, (25a)

i
∂

∂t
Qρ = Q L P ρ + Q L Qρ. (25b)
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If the interaction Hamiltonian, in the interaction picture, is
of the form εHI (t), where ε is a unitless number character-
izing the smallness of the interaction, we can formally solve
the equation for Qρ as

QρS(t) = G(t, t0)QρS(t) + ε

∫ t

t0

ds G(t, s)Q L(s)P ρS(s),

(26)

where G(t, s) = T exp [ε ∫ t

s
ds′ Q L(s′)]. Substituting this

equation into (25a) above, we obtain the Nakajima-Zwanzig
equation:

d

dt
P ρS = εP L(t)G(t, t0)Qρ(t0) + εP L(t)P ρS(t)

+ ε2
∫ t

t0

ds P L(t)G(t, s)Q L(s)P ρS(s). (27)

Commonly, in the case of an uncorrelated initial state (5),
the initial environment density matrix is chosen to generate
the projection operator P , which means that P ρ(0) = ρ(0)

and Qρ(0) = 0. Alternatively, the projector may be chosen
so as to annul the odd moments of the interaction Hamilto-
nian. The choice of P generally depends on the application
in mind, and P is often assumed to be associated with the
equilibrium canonical or grand canonical statistical operator
for the environment.

The time-convolutionless (TCL) projection operator tech-
nique, originally due to Shibata et al. [42], writes the Nakaji-
ma-Zwanzig equation in a form that depends only on the in-
stantaneous ρS(t), and all the memory effects are relegated
to certain evolution operators, which opens doors to system-
atic approximations, even if the operators are still quite un-
wieldy and a partial trace does technically need to be taken
over the equation after everything. (Partial-trace-free time-
convolutionless equations of motion and the related concept
of memory dressing have been proposed in [43, 44].) Here,
we quote the TCL equation in the form without the inhomo-
geneity, i.e. for Qρ(0) = 0.

d

dt
P ρ(t) = K(t)P ρ(t), (28)

where

K(t) = εP L(t)
[
1 − Σ(t)

]−1 P , (29a)

Σ(t) = ε

∫ t

t0

ds G(t, s)Q L(s)P U (t, s), (29b)

U (t, s) = T exp

[
−ε

∫ t

s

ds′ L(s)′
]
. (29c)

Obviously, there is an assumption that 1 −Σ(t) is invertible
[43]. Upon performing a Taylor expansion of 1 − Σ(t) in

terms of ε, we can get a series K(t) = ∑
n εnKn(t), where

K1 = 0, K3 = 0, K2(t) = ∫ t

t0
dt ′ P L(t)L(t ′)P , and K4(t) =∫ t

t0
dt1

∫ t

t0
dt2

∫ t

t0
dt3 P L(t)L(t1)L(t2)L(t3)P .

If K ≈ K2, the TCL equation yields the Redfield equation
(14). A number of examples of TCL equations with second
and fourth order coupling can be found in [2]. Timm [45]
discusses a diagrammatic expansion of time-convolutionless
equations.

It is also worth noting that a projection operator technique
can be used to derive the well-known semiconductor Bloch
equations [46].

6 Examples of non-Markovian master equations in
quantum transport

One of the early non-Markovian approaches to electron
transport in nanostructures was put forth by Bruder and
Schoeller [47]. Time-dependence was introduced either
by periodic modulation of the Fermi energy or by time-
dependent perturbations to the quantum states in the dot.
The authors focused on the effects of the Coulomb interac-
tion in the limit of low tunneling rates but finite level spac-
ing.

Vaz and Kyriakidis [48–50] calculated the full Redfield
tensor in Fock space for a two-level system (Fig. 3). The
authors find that Fock-space coherences between states with
different particle numbers are robust and may be preserved
even in the presence of tunneling into and out of the dot.
The authors also note that, while Redfield dynamics could
potentially violate positivity of the statistical operator, they
have not observed it in practice [48].

Recently, Gudmundsson and co-authors [51] used a non-
Markovian transport equation to analyze time-dependent
transport in a few-mode nanowire containing a localized
region and focused on the effect of nontrivial geometry.
The authors pay attention to the fact that arbitrary decisions
where the active region ends and contacts begin lead to in-
consistencies, and that an effective overlap between the S

and E wave functions will yield effective interaction Hamil-
tonian matrix elements. This important issue was discussed
in detail by Rossi [52].

Zedler et al. [53] present an interesting analysis of non-
Markovian versus Markovian equations in the weak cou-
pling limit on the example of a quantum dot coupled to
contacts with a Lorentzian density of states (i.e. contacts
with a finite electron lifetime), thereby going beyond the
high bias limit, and conclude that one must be careful with
non-Markovian master equations as they do not necessarily
perform better than their Markovian counterparts when non-
Markovian effects are strong, and are not in general guaran-
teed to conserve positivity. The authors compare (see Fig. 4)
the exact solution for a single level system with dynamical
coarse graining [54], non-Markovian master equation, and
the Markovian master equation limit [53].
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Fig. 3 Markovian and
non-Markovian time evolution
of population probabilities in a
quantum dot with two transport
channels and four states. The
plots are for symmetric source
and drain tunnel barriers, and
varying orbital asymmetry.
A 6 meV bias symmetric about
the Fermi energy is assumed.
The two transport channels have
energies ±1 meV around the
Fermi level. Plots (a)
through (d) are results for the
Markov limit, whereas
plots (e) through (h) present
results for the non-Markovian
theory. Reprinted with
permission from [49], E. Vaz
and J. Kyriakidis, Phys. Rev. B
81, 085315 (2010). (©) 2010
The American Physical Society

6.1 Coarse graining over contact relaxation time

As many nanostructures have no resonances, the work by
Novakovic and Knezevic [55, 56] emphasizes the continu-
ous spectrum in the open active region, with forward- and
backward-propagating scattering states, whose asymptotic
forms are plane waves (a combination of injected and re-
flected waves in the incoming contact, transmitted wave in
the outgoing one). The model interaction Hamiltonian cou-
ples each scattering state only with the plane wave with the
same wave number k from the injecting contact, i.e.

Hint =
∑
k>0

Δkd
†
k ck,L + Δ−kd

†
−kc−k′,R + h.c. (30)

c
†
k,L (ck,L) and c

†
−k′,R (c−k′,R) create (destroy) an electron

with a wavevector k in the left and −k′ in the right con-

tact, respectively, dk and d
†
k do the same for active-region

states, and k′2 − k2 = 2m∗eV/�
2 (k and k′ are the wave

numbers corresponding to the same energy in the two con-
tacts separated by bias V ). The hopping coefficients Δk and
Δ−k are proportional to the current Ik carried by each mode,
Δk = Ik

eTk
, where Tk is the transmission coefficient of mode

k [56].
To obtain a tractable theoretical approach, the full dy-

namics is coarse grained over the momentum-relaxation
time of the contacts. Contact relaxation occurs on timescales
of order 101–102 femtoseconds [57, 58], owing to fast
electron-electron scattering that results in a drifted Fermi-
Dirac distribution [59].

To coarse grain, we partition the time axis into intervals
of length τ , tn = nτ , so the environment interacts with the
system in approximately the same way during each interval
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Fig. 4 Time-dependent occupation probability of the single bound
state in a dot coupled to contacts with a Lorentzian density of states
with width εR . Calculation is presented for the exact solution, dynam-
ical coarse graining (DCG), non-Markovian master equation (NMM),
and Markovian master equation (MMM). Approximations parameters
are εd = ΓR,0 εd − ΓR,0 = ΓL = 0.1ΓR,0, where εd , ΓR,0, and ΓL are
the dot energy level and the rates of tunneling into the right and left
contacts, respectively. Reprinted with permission from [53], P. Zedler
et al., Phys. Rev. B 80, 045309 (2009). (©) 2009 The American Phys-
ical Society

[tn, tn+1] [21],

dρS

dt
≈ ρS,n+1 − ρS,n

τ
= Kτ ρS,n, (31)

where Kτ =
∫ τ

0 K(t ′)dt ′
τ

=
∫ tn+1
tn

K(t ′)dt ′
τ

is the averaged value
of the map’s generator over any interval [tn, tn+1] (K is reset
at each tn). If the coarse-graining time τ is short enough,
then the short-time expansion of K can be used to perform
the coarse-graining [55].

Each term in the short-time expansion of K turns out to
be a sum of independent contributions over single-particle
states, so in reality we have a multitude of two-level prob-
lems, one for each |k〉, where the two levels are a particle be-
ing in |k〉 (“+”) and a particle being absent from |k〉 (“−”).
Each such 2-level problem is cast on its own 4-dimensional
Liouville space, with ρk = (ρ++

k , ρ+−
k , ρ−+

k , ρ−−
k )T being

the reduced statistical operator that describes the occupation
of |k〉 and evolves according to a master equation

dρk

dt
= Kτ,kρk. (32)

The equations for f±k = ρ++
±k become

dfk

dt
= −τΔ2

kfk + τΔ2
kf

L
k

(
kd(t)

)
, (33a)

df−k

dt
= −τΔ2−kf−k + τΔ2−kf

R
−k′

(
kd(t)

)
. (33b)

The above equations describe non-Markovian evolution, be-
cause drifted Fermi-Dirac distribution functions in the con-
tacts depend on time through the drift wave vector kd (re-
lated to current). As the transient progresses, the current
and the charge density in the structure change, which in
turn changes the potential profile, the scattering states avail-
able to electrons, the transmission coefficients, and, to a
small degree, the interaction matrix elements Δ±k , as well
as the aforementioned contact distribution functions. More-
over, there may be well-like confined states that cannot be
populated by tunneling but only by scattering in the active
region. These considerations have been addressed in detail
in [56, 60].

Figure 5 depicts the potential, charge density, and cur-
rent density for a single ellipsoidal valley in an nin silicon
diode at room temperature. The left and right contacts are
doped to 1017 cm−3, whereas the middle region is intrinsic
(undoped). In the three main panels, the momentum relax-
ation time in the contacts is taken to be τ = 120 fs, based on
the textbook mobility values for the above doping density.
The characteristic response time of the current is of order
hundreds of picoseconds, three orders of magnitude greater
than τ . The transient duration can be thought of as the in-
verse of a typical Δ2

kτ among the k’s participating in the
current flow; shorter τ means weaker coupling and a slower
transient (inset).

7 Conclusion

Electrons in the active region of nanostructures constitute an
open many-body quantum system, coupled with reservoirs
of charge, as well as interacting with phonons and photons.
We overviewed the basics of the open system theory, with
special focus on the approximations that lead to Markovian
and non-Markovian master equations for the reduced statis-
tical operator, and highlighted some recent applications of
both types of master equations in quantum transport theory
and simulation.

It should be noted that this review did not discuss other
widely applied techniques for time-dependent quantum
transport, such as the Wigner function simulation [61, 62],
nonequilibrium Green’s functions [28], time-dependent den-
sity functional theory [37], Bohmian trajectories [63], or full
quantum statistics [64], which will receive due attention in
other reviews in this special issue. Also, we did not discuss
semiconductor Bloch equations [46, 65], which are often
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Fig. 5 Potential (a), charge density (b), and current density (c) in the
nin diode as a function of time upon the application of −25 mV to the
left contact. The n-type regions are doped to 1017 cm−3 and contact
momentum relaxation time is τ = 120 fs, as calculated from the text-
book mobility value corresponding to the contact doping density. Inset
to panel (c): effect of different contact momentum relaxation times τ

(equal to the coarse-graining times for the active-region dynamics) on
the duration of the transient

employed to address ultrafast optics in semiconductors, and
which deserve much more space than available here.

We conclude with some thoughts on the limitations of the
master equation framework, as well as potential avenues for
further developments.

Active region/contact partitioning. An obvious question
is where the active region ends and the contacts begin; there
is no a good answer to this question, especially for struc-
tures that have no resonances. In large and complex physi-
cal systems it is impossible to treat all degrees of freedom
quantum-mechanically, so a boundary between the quan-
tum and the classical (rapidly dephasing) parts has to be
adopted, but a boundary should be moved until convergence
is reached and the physics no longer varies with its posi-
tion [66, 67]. Rossi [52] has argued that, in the Wigner func-
tion simulations, this seemingly arbitrary introduction of the
contact/active region boundary results in artifacts that have
conceptual, rather than computational, origin.

A related issue is that the reduced statistical operator for-
malism requires that we be able to write the total many-body
Fock space as a tensor product of the Fock spaces of the
system and environment, and that we write down an interac-
tion Hamiltonian between the two. With S and E containing
electrons, we can try to split the total S + E single-particle
Hilbert space into S and E subspaces spanned by specific
eigenvectors of the position operator, then construct Fock
spaces based on these spatially separated single-particle
spaces, and finally form a tensor product of said Fock
spaces. Unfortunately, this framework artificially makes the
interaction local and is not a good choice for capturing cur-
rent flow that the full S + E Fock space can describe. Rossi
[52] shows that consistency requires that the effective in-
teraction depend on the overlap between contact states and
active region states, where both contact and active region
states in principle extend throughout the whole coordinate
space.

Validity of the RWA approximation. The usual secular
or RWA approximation—assuming that the system energy
levels are so large that the spacing between them is much
greater than the system relaxation rate—works well for opti-
cal systems and is amply applied in the derivations of master
equations for electronic transport, but may not necessarily
hold. In fact, in nanostructures with a continuum of states,
the spacing between relevantly coupled levels is small and
easily smaller than the expected system relaxation rate, es-
pecially in the case of strong coupling with the contacts.
Therefore, the opposite limit, that of quantum Brownian mo-
tion [2, 68] may be more applicable in electronic systems
with densely spaced system states strongly coupled to the
environment. This is a direction in which quantum master
equations may have a lot to offer to quantum transport stud-
ies [69].

Uncorrelated initial state. Considering that, in reality, the
contacts and active region share a Fock space, once we par-
tition it into spatially-determined subspaces and if there are
no tunnel barriers, it is not easy to justify the approxima-
tion of an uncorrelated initial state. Taking a close look into
correlated initial states [70] can be a very fruitful direction
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of research, one where a tight coupling between approaches
that do not adopt contact/active region partitioning, such as
TDDFT, with master equations would likely be necessary.

High-frequency transport. Another direction in which the
master equation approaches can grow is to look into systems
with continua of states and realistic fermionic reservoirs,
with a more complete account of intra-reservoir dephasing.
This work has opportunities to interface with modern exper-
imental work on GHz-frequency response of nanostructures
[71, 72].

Deriving single-particle techniques from statistical op-
erator nonunitary dynamics. Capturing the entire statistical
operator is feasible only in very small systems. With the sta-
tistical operator being the “parent” concept from which sin-
gle particle quantities such as the density matrix and Green’s
functions can be derived, it is reasonable to expect that a
good non-Markovian approximation for the many-body sta-
tistical operator of the electronic system would come first,
and from its non-unitary evolution one can further derive
single-particle techniques [73]. An open direction of re-
search is to look at single-particle kinetic approaches that
originate from non-Markovian approximations for the evo-
lution of the reduced statistical operator. Time-convolu-
tionless non-Markovian equations, thus far underutilized in
quantum transport theory, could enable systematic develop-
ment of single-particle non-Markovian formalisms that are
of a fixed order in the interaction.
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