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Quantum Master Equations in Electronic
Transport

B. Novakovic and I. Knezevic

Abstract In this chapter we present several quantum master equations (QMEs) that
describe the time evolution of the density matrix at various levels of approximations.
We emphasize the similarity between the single-particle QME and the Boltzmann
transport equation (BTE), starting from truncating the BBGKY chain of equations
and ending with similar Monte-Carlo approaches to solve them stochastically and
show what kind of boundary conditions are needed to solve the single-particle QME
in the light of the open nature of modern electronic devices. The Pauli master equa-
tion (PME) and a QME in the perturbation expansion are described and compared
both with one another and with the BTE. At the level of the reduced many-particle
density matrix, we show several approaches to derive many-particle QMEs starting
from the formal Nakajima–Zwanzig equation and ending with the partial-trace-free
time-convolutionless equation of motion with memory dressing. Using those results
we derive the correct distribution functions of the Landauer-type, for a small, bal-
listic open system attached to two large reservoirs with ideal black-body absorption
characteristics.

Keywords Quantum transport · Master equation · Density matrix · Distribution
function · Transient

1 Introduction

Electronic devices are many-particle objects. Therefore, they must be analyzed
within the realm of statistical mechanics, with the goal to describe the time evolution
of the full set of degrees of freedom belonging to a particular device.1 Considering

1 This gives an exact solution for the device’s dynamical behavior (transient or steady state), but is
not always necessary, because suitable approximations may suffice.
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that every particle, an electron, a phonon or another particle of interest, such as an
exciton or a plasmon, can be described by several degrees of freedom (classical or
quantum), the choice of which depends on the particular problem, and that there
might be many particles in a single device, the problem clearly becomes intractable.
In reality, one has to apply suitable approximations in order to reduce the problem to
the one that is, at least, numerically feasible. This proceeds by choosing the relevant
degrees of freedom and reducing the system of equations to describe their evolu-
tion, while the rest of the system is included by applying some assumptions about
the irrelevant degrees of freedom. By degrees of freedom we mean, for example,
the position and momentum of each particle (classically), or quantum numbers that
span the Hamiltonian eigenstates (momentum, spin...).

Roughly speaking, each major approximation applied leads to a certain method
or class of methods that are standardly used by device physicists and engineers to
calculate the device transport properties. One possible classification of methods is
done by approximating just how many particles/states in the many-particle prob-
lem are considered, so we can speak of a one-body problem (single particle states),
two-body problem, and so on... This is commonly done by truncating the BBGKY
hierarchy of equations [1, 2], that are able to describe the many-particle problem
exactly, with all the mutual interactions between many-particle subsets. Along with
the assumption of how the many degrees of freedom per particle are treated exactly
we arrive at the kinetic and hydrodynamic models, most commonly in use. Kinetic
models are at the level of distribution functions defined on a single-particle phase
space, therefore treating one-body problems with interactions exactly, while hydro-
dynamic models incorporate additional assumptions about the momentum, therefore
not treating the momentum exactly [3]. Most often [4–6], we account for interparti-
cle interactions in the single-electron picture through the mean-field approximation
(Hartree approximation), by self-consistently solving the Poisson equation along
with any single-particle transport equation. Essentially, what we do is to solve the
Poisson equation with the nonlinear charge density calculated by using the transport
equation. When this system of equations converges, all other quantities of interest
(e.g. current) can be calculated separately.

Another criterion we can use to distinguish between different models is whether
they are quantum or semiclassical [7], classical being irrelevant in the context of
small electronic devices. The simplest quantum model relies on particles populating
the eigenstates of the single-particle Hamiltonian, obtained by solving the time-
independent Schrödinger equation. This model can account for quantum tunneling,
interference effects, sharp potentials and other quantum mechanical features, but is
unable to handle the time dynamics of far from equilibrium states in the presence of
scattering and coupling to the contacts [3]. More advanced quantum models define
mixed states allowing for spatial localization of particles due to their coupling to the
surroundings. Among these methods we can mention the single-particle density ma-
trix method where the central equation is the Liouville–von Neumann equation [8],
the Wigner function method with the Wigner equation [9] and the non-equilibrium
Green’s function method with the Dyson equation [10, 11]. Usually, these are all
quantum kinetic equations, with the Liouville–von Neumann equation being known
as the quantum master equation (QME), since it is an equation of motion for the
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density matrix, either a single-particle (quantum kinetic level), or a full/reduced
many-particle density matrix. In some situations one can use the single-particle
Pauli master equation (PME) [12], which, by its ability to model dissipation of
eigenstates, can be situated between the pure Schrödinger equation (eigenstates
without dissipation) and the single-particle density matrix method (mixed states
with dissipation). The Boltzmann transport equation (BTE) is semiclassical. Its solu-
tion is a distribution function in the phase space that, therefore, does not respect the
uncertainty relations and represents electrons as point-like particles for the purpose
of drift and diffusion, making features like the tunneling, resonances, interference,
etc. impossible. On the other hand, electrons are represented by plane waves during
collisions, which makes the BTE unable to capture sharp potential changes (of the
order of electron’s wavelength). The BTE can be formally obtained by truncating
the BBGKY chain [13]. Alternatively, it can be obtained from the NEGF method in
the strong scattering limit [10].

Today, integrated circuits are made of many small electronic devices connected
by leads to large reservoirs that supply them with charged particles (or other kind
of matter/information). The natural framework in which modern electronic devices
should be studied is the open system formalism, providing the necessary mathemat-
ical tools for handling a large number of variables and focusing on the most relevant
ones [14, 15]. It requires the use of the reduced many-particle density matrix,
that stores the information about the relevant variables after all the others have been
traced out (a single-particle density matrix is generally insufficient). Most generally,
we can refer to the electronic device in question as the system, which contains all the
relevant variables, while everything else is the environment (e.g. reservoirs spatially
separated from the system; other particles, like phonons, that share the same volume
as the system). Therefore, the object of research is now a composite system, consist-
ing of two, or more, physically coupled subsystems. The accuracy and the relevancy
of our model will depend on what assumptions we apply to the environment.

In Sect. 2 we give an introduction to the exact many-particle density matrix and
the corresponding equation for its time evolution, the Liouville–von Neumann equa-
tion. Then, we introduce the approximate single particle QME and describe some
of its properties in closed and open systems. As examples of single-electron QMEs,
two equations are mentioned: the PME, as applied to small electronic devices (open
systems) [16, 17], in the Born–Markov limit and Hartree approximation, and the
single-electron/many-phonon QME for bulk (closed system) [18–20], in the pertur-
bation expansion and beyond the Born–Markov approximation. Monte Carlo solu-
tions for both equations are described and compared to the conventional ensemble
Monte Carlo technique. In Sect. 3 we introduce the reduced many-particle density
matrix formalism, by starting from the formal derivation of the Nakajima–Zwanzig
equation. In the following various techniques are introduced in order to make the
Nakajima–Zwanzig equation more tractable: the Born–Markov approximation, the
conventional time-convolutionless equation of motion, the partial-trace-free time-
convolutionless equation of motion and the memory-dressing approach. In the final
section, we build on the previous section and, by using the coarse-graining proce-
dure and the short-time expansion of the generator of the time evolution, ultimately
arrive at the correct steady-state distribution functions of the Landauer type, for the
ballistic open quantum system.
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2 The Single-Particle Quantum Master Equation

The QME is an equation of motion for the density matrix. In the single-particle
picture, with off-diagonal elements included, it is a kinetic equation, where diag-
onal elements provide information about the population of single-particle states,
while off-diagonal elements represent coherences between different single-particle
states, describing localized particles. The single-particle QME is approximate and
can be formally derived by truncating the BBGKY chain of equations, similar to
the BTE. It describes the time-irreversible, dissipative time evolution for the single-
particle states. In this section, we will discuss the general form of the single-particle
QME, as well as two particular equations, starting from the full many-particle den-
sity matrix and its equation of motion, the Liouville–von Neumann equation.

2.1 The Density Matrix and the Liouville–von Neumann Equation

The density matrix formalism was pioneered by John von Neumann in 1927 [21,22]
and is used to describe a mixed ensemble of states of a physical system, where by
mixed we have in mind an ensemble that contain at least two, or more, different
states of a physical system. Two extremes would be a pure ensemble, where all the
states are the same, described by some state ket |α〉, and a completely randomized
ensemble, with each one of N states described by a different state ket |αi〉, where
i = 1, ...,N. Here, the state |α〉, or |αi〉, is, in general, a linear combination of the
eigenstates of the Hamiltonian. For a physical system with many particles the most
exact density matrix is the one that describes a mixed ensemble of a full set of many-
particle states, taking into account all the mutual interactions between the particles
in the system. Such a many-particle density matrix at some initial time 0 is defined as

ρ12···N(0) =
M

∑
i=0

W (i)
12···N

∣
∣
∣Ψ (i)

12···N(0)
〉〈

Ψ (i)
12···N(0)

∣
∣
∣ , (4.1)

where M is the maximum number of many-particle states in the ensemble and

W (i)
12···N’s are real positive numbers, representing the probability of occupation of

the many-particle states |Ψ (i)
12···N(0)〉, which are symmetrized or anti-symmetrized

linear combinations of products of a complete set of single-particle states [23]. The
density matrix in (4.1) is normalized with the condition Tr(ρ12···N(0)) = 1. From
(4.1) follows that ρ is also hermitian, ρ†

12···N(0) = ρ12···N(0).
The time-evolution of the states |Ψ (i)

12···N(0)〉 is given by the many-particle time-
dependent Schrödinger equation

ih̄
d
dt

∣
∣
∣Ψ (i)

12···N(t)
〉

= H12···N
∣
∣
∣Ψ (i)

12···N(t)
〉

. (4.2)
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These states are not necessarily orthogonal. Since states |Ψ (i)
12···N(0)〉 in (4.1) evolve

according to (4.2), we have that the many-particle density matrix at some later time
t will be given by

ρ12···N(t) =
M

∑
i=0

W (i)
12···N

∣
∣
∣Ψ (i)

12···N(t)
〉〈

Ψ (i)
12···N(t)

∣
∣
∣ . (4.3)

By differentiating (4.3) with respect to time and making use of (4.2) we arrive at
the most general form of the Liouville–von Neumann equation, describing the time
evolution of the full many-particle density matrix for a closed system

ih̄
d
dt

ρ12···N(t) = [H12···N ,ρ12···N(t)]≡ L12···Nρ12···N , (4.4)

where L12···N is defined as a commutator superoperator generated by the
many-particle Hamiltonian H12···N . Because this equation was generated by the
Schrödinger equation, it preserves the previously stated properties of the density
matrix, namely the normalization and hermiticity. If we use a shorthand notation

|Ψ (i)
12···N(t)〉 ≡ |αi〉, the expectation value of an observable A in a mixed ensemble

described by the initial condition (4.1) and by (4.4), is given by

〈A〉 =
M

∑
i=1

wi 〈αi|A |αi〉=
M

∑
i=1

wi 〈αi|αi〉 〈αi|A |αi〉

=
M

∑
i=1

〈αi|ρ12···NA |αi〉= Tr(ρ12···NA) , (4.5)

where we use the fact the many-particle states, |αi〉 are properly normalized.

2.2 The BBGKY Chain and the Single-Particle QME

Instead of one exact many-particle Liouville–von Neumann equation (4.4), we can
construct N coupled equations for the reduced density matrices, ρ1, ρ12, . . . , ρ12···N ,
that form the BBGKY chain of equations [2]. Similar to the way the BTE, as a
single particle equation for the distribution function over a single-particle phase
space (r,p), is derived by applying approximations to the BBGKY chain of equa-
tions [13], we can derive the single-particle QME for the time evolution of the
single-particle density matrix. If we assume that the dissipation processes are suf-
ficiently weak (the weak-coupling or Born approximation) and memoryless or
Markovian (one collision is completed before the next one starts, so that colli-
sions do not depend on their history or initial conditions), then we can consider that
the transport consists of periods of “free flights” (generalized “free flights” gener-
ated by the single particle Hamiltonian) and temporally and spatially very localized
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collisions described by a linear collision operator. In this way we can obtain a
Boltzmann like QME for the time evolution of the single-particle density matrix
ρ(t) [3]

dρ
dt

=
1
ih̄
Lρ +Cρ , (4.6)

where C is the collision superoperator, which is usually used to describe elec-
tron/phonon or electron/impurity interactions, and L is a commutator superoperator
(4.4) generated by the single-particle Hamiltonian H. H, for noninteracting parti-
cles of the same kind (usually we are interested in electrons), is a sum of the kinetic
energy operator and the potential energy due to any external potential Vext(r), but if
we couple the transport equation (4.6) with the Poisson equation it will also include
the Hartree potential VH(r) (mean-field approximation). So, we have in total

H =− h̄2

2m
∇2 +Vext(r)+VH(r). (4.7)

Equation (4.6) is a limiting case of a density matrix completely reduced down to
the single-particle states, with the additional assumptions about the nature of in-
teractions in the system, stated above. The consequence of this derivation is the
introduction of the time-irreversibility into the evolution of the single-particle den-
sity matrix ρ in (4.6), starting from the time-reversible (4.4).

So far we have considered a closed physical system for whichL in (4.6) is hermi-
tian, i.e. with real eigenvalues. Therefore it will contribute with complex oscillatory
solutions for ρ in (4.6). The collision operator C will introduce negative real parts
of eigenvalues which will cause an exponential decay of ρ . Therefore, this time-
irreversible system is stable and behaves in an expected way. L is hermitian as a
consequence of the hermiticity of the single-particle Hamiltonian for a closed sys-
tem, where the hermiticity is defined through [3, 24]

∫

V
[ψ∗(Hψ)− (Hψ)∗ψ ]d3r = 0

=
∫

S

(

ψ∗
dψ
dn
− dψ∗

dn
ψ
)

d2r =
∫

S
Jds, (4.8)

where Green’s identity was used, ψ is the wavefunction, H the single-particle
Hamiltonian and J the current density. We see that, when the number of particles
is conserved in the volume V (closed system), the current density flux given by the
last term in (4.8) is zero according to the current continuity equation and H, as well
as L, are hermitian.

If, on the other hand, the system is open, so that it exchanges particles with the
environment, the number of particles is not conserved in general and both H and
L are non-hermitian. Therefore, the eigenvalues of L will have imaginary parts and
only non-positive imaginary parts are permissible in order to avoid having grow-
ing exponentials. To ensure this, it was shown by Frensley [3] that the boundary
conditions have to be carefully chosen. In particular it is necessary to use time-
irreversible boundary conditions, which can be easily defined only in phase space.
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For example, if we have a 1D problem with two contacts and a region of interest
(open system) in between we can choose different boundary conditions at (xL, px)
than at (xR,−px), where xL and xR are the left and right spatial boundaries of our
open system. Now, under the time inversion those boundary conditions will apply to
(xL,−px) and (xR, px), respectively, and the problem will not be the same anymore.
These BCs mean that the occupations of positive and negative propagating states are
fixed by the left and right contacts, respectively. Even if we disregard the fact that
the time-irreversible BCs are needed to achieve stability, they are a natural choice in
the context of the following statement in [3] “if one’s objective is to develop useful
models of physical systems with many dynamical variables, rather than to construct
a rigorously deductive mathematical system, it is clearly most profitable to adopt
the view that irreversibility is a fundamental law of nature.” The BCs of this form
are naturally to be used with the Wigner function method. To include this kind of
boundary conditions in (4.6) we can formally specify a contribution to the time evo-
lution of the density matrix due to the injection/extraction through the contacts, a
source term, the form of which can be determined phenomenologically

dρ
dt

=
1
ih̄
Lρ +Cρ +

(
∂ρ
∂ t

)

inj/extr
. (4.9)

2.3 The Pauli Master Equation

As already mentioned in Sect. 1, the PME describes the time evolution of the
probabilities of occupation of the single-particle Hamiltonian’s eigenstates. With
pn(t)≡ ρnn(t) and for a closed system it is given by

d
dt

pn(t) = ∑
m

[Anm pm(t)−Amnpn(t)] . (4.10)

Equation (4.10) is easily justifiable at a phenomenological level, in situations when
the exact Hamiltonian is not known, or when it is too complicated [15]. Then, we
can always set up a master equation of the previous form, to describe the dissipa-
tive transport in the system. Coefficients Amn represent transition rates between the
levels and they can be found in a standard way, by using the quantum mechanical
perturbation theory (Fermi’s golden rule), or from experimental data. Alternatively,
the PME follows from (4.6) by using Fermi’s golden rule for the collision superop-
erator and a basis that diagonalizes the single-particle Hamiltonian that generates
L, since then the term Lρ vanishes and there is only the collision operator, which
corresponds to the right-hand side of (4.10). So, the PME is a closed equation for
the diagonal elements of the single-particle density matrix in the eigenbasis of the
single-particle Hamiltonian, obtained from (4.6) by using Fermi’s golden rule to de-
scribe scattering. It will be a complete description of the problem in the case the
off-diagonal elements in (4.6) can be neglected. We will say more on the conditions
to satisfy that requirement in the following.
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The simplicity of the PME (4.10) makes it attractive for applications to real
problems of quantum transport in electronic devices. However, the major disadvan-
tage of the PME is that it violates the current continuity, as shown by Frensley [3].
The reason for this is that open systems are inhomogeneous, making the eigenstates
have different spatial distributions. Mathematically, if we combine the PME and the
current continuity equation, with ρ(x,x;t) being the electron density, we can ob-
tain for the rate of change of the electron density due to transitions between two
eigenstates ψm and ψn [3]

∂
∂ t

ρ(x,x;t) =
∂ pm

∂ t
|ψm(x)|2 +

∂ pn

∂ t
|ψn(x)|2

= [Anm pm(t)−Amnpn(t)]×
[|ψn(x)|2−|ψm(x)|2] . (4.11)

The left-hand side of (4.11) must be zero, because the divergence of an eigenstate’s
current density is zero. Since the second term on the right-hand side is non-zero,
due to different spatial distributions of different eigenstates, we need the first term
on the right-hand side to be zero, which is true only in equilibrium when detailed
balance is satisfied. The conclusion is that the PME alone (i.e. without considering
the off-diagonal terms) may be used at or very near equilibrium and in steady state,
when ∂ pm,n/∂ t = 0 and therefore ∂ρ(x,x;t)/∂ t = 0, as it should be because ∇·Jm =
∇ ·Jn = 0.

A good example of using the PME in modeling small electronic devices is the
work done by Fischetti [16, 17]. There, the PME application to small devices was
justified and the results of steady state simulations with [16] and without [17] the
full band structure were compared with those obtained by using the BTE. Set-up is
such that contacts to the device as well as phonons and other particles important for
scattering belong to the environment, while the device region with electrons is the
open system. The justification and conditions for using the PME go as follows:

• As shown by Van Hove [25] and Kohn and Luttinger [26], if one starts from a
quasidiagonal initial state and in the weak-scattering limit the off-diagonal terms
remain negligible. Quasidiagonal states satisfy the condition that the off-diagonal
terms are nonvanishing only when mixing states with energy difference δEth�
δED, where δEth is the thermal broadening of the states and δED is the energy
scale over which the matrix elements of perturbing interactions are constant.

• If the size of the device is comparable or smaller than the dephasing length of
the incoming electrons from the contacts, L� λφ (λφ ≈ 30−50nm for Si at
300K), then they appear as plane waves, i.e. the density matrix is diagonal in
the momentum representation. Assuming the weak-scattering limit in the open
system (device), we can say, with respect to the previous statement, that neither
are off-diagonal elements injected from the contacts nor do they form in the
device region, so that the PME is applicable.

• The PME is unable to model the femtosecond time dynamics, because that is a
genuinely off-diagonal problem on time-scales of the order of collision durations
and strong-scattering effects beyond Fermi’s golden rule. The PME’s areas of
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applicability are steady state with the weak-scattering and long-time limits and
“adiabatic” transients, when the number of particles in the system changes very
slowly with time.

The PME with Fermi’s golden rule can only be used to find occupation prob-
abilities governed by scattering in the system, but not due to the coupling to the
contacts. Following the work of Fischetti [16, 17] this coupling can be introduced
at a phenomenological level through a source term in the PME. The form of that
source term for a general multiterminal configuration is given by [17]

(

∂ρ (s)
μ

∂ t

)

res

= |C(s)
μ |2υ⊥(kμs)

[

f (s)(kμs)−ρ (s)
μ

]

, (4.12)

where s indicates the contact/terminal, υ⊥ is the injecting velocity, f (s) the s-th
contact distribution function, μ the full set of quantum numbers describing the

eigenstates in the open system/device and C(s)
μ takes care of the proper normalization

of the states. Additional assumption is that the injecting distributions are given by

the drifted Fermi–Dirac distribution f (s)
(

k(s)
μ −ks

d

)

, where ks
d is calculated from

the semiclassical current in the contact s. This takes into account the fast relaxation
in the contacts and ensures the charge neutrality near the contacts/device boundaries
as well as the current continuity. With this source term we can write the final steady
state equation of motion for populations as

∑
μ ′r

[

Aμs;μ ′rρ
(r)
μ ′ −Aμ ′r;μsρ

(s)
μ

]

+ |C(s)
μ |2υ⊥(kμs)ρ

(s)
μ

= |C(s)
μ |2υ⊥(kμs) f (s)

(

k(s)
μ −ks

d

)

. (4.13)

This is a set of equations over μ that has to be solved self-consistently with kd by
applying the condition of current continuity at the contact/device boundaries.

Some of the results of the full-band calculations with (4.13) are given in Fig. 4.1
for an nin Si diode at 77 K, biased at 0.25 V [17]. For comparison purposes, along-
side them are the results of the simulation with the Monte Carlo BTE.

2.4 A Single-Particle QME Beyond the Born–Markov
Approximation

A somewhat different QME to study semiconductors in a uniform electric field can
be constructed using the perturbation expansion of the single-electron/many-phonon
Liouville–von Neumann equation [18–20]. The difference with the previous one is
that it was applied to homogeneous bulk problems (not devices), but on the other
hand it makes no assumption about the electron–phonon coupling (it is beyond the
Born–Markov or weak-scattering/long-time limit of the PME) and is able to sim-
ulate energy-nonconserving transitions, multiple collisions and intracollisonal field
effects [27, 28].
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Fig. 4.1 Top frame – the electron charge density and potential energy for an nin Si diode at 77 K,
biased at 0.25 V, where the solid lines are results of using the master equation (4.13), while the
dashed lines are results of using the Monte Carlo BTE. Bottom frame – similar as the top frame, but
with results for the average kinetic energy and drift velocity. Reprinted with permission from [17],
M. V. Fischetti, Phys. Rev. B 59, 4901 (1999). c©1999 The American Physical Society

The perturbation expansion to the Liouville–von Neumann equation for bulk
semiconductors in a uniform electric field can be constructed as follows [18]. The
Hamiltonian of this system in the effective mass approximation and with parabolic
energy bands is a sum of several contributions

H = He + HE + Hp + He−ph = H0 + He−ph, (4.14)

where

He =− h̄2

2m∗
∇2 , HE = eEr , Hp = ∑

q
h̄ωqa†

qaq (4.15)
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and He−ph is a standard Hamiltonian describing electron–phonon coupling and
consisting of absorption and emission parts. H0, describing the free and non-
interacting electron gas, the equilibrium phonon distribution and the external
homogeneous electric field is used to solve the time-dependent Schrödinger
equation. Approximate solutions are the tensor products of the time-dependent
accelerated plane waves (they would be accelerated Bloch waves beyond the effec-
tive mass approximation) normalized to 1 over the crystal volume V [29], and the
many-body phonon states |nq,t〉

|k0,nq,t〉= 1√
V

eik(t)re−i
∫ t

0 dsω(k(s)) |nq, t〉 , (4.16)

where k(t) = k0− eEt/h̄ and ω(k(t)) = h̄k2/2m∗.
If we use this basis set (whose time evolution is generated by H0) for the den-

sity matrix, the Liouville–von Neumann equation contains only the interaction
Hamiltonian

ih̄
∂
∂ t

ρ(μ ,μ ′,t) =
[

He−ph(t),ρ(t)
]

μ,μ ′ , (4.17)

where μ ≡ (k0,nq). Upon the formal integration and perturbation expansion we
obtain the following Dyson series for the diagonal elements of the density matrix
ρ(μ , t) = ρ(μ ,μ , t)

ρ(μ , t) = ρ(μ ,0)+
∫ t

0
dt1

[

H̃e−ph(t1),ρ(0)
]

μ,μ

+
∫ t

0
dt1

∫ t1

0
dt2

[

H̃e−ph(t1),
[

H̃e−ph(t2),ρ(0)
]]

μ,μ
+ · · ·

= ρ (0)(μ ,t)+ ρ (1)(μ ,t)+ ρ (2)(μ ,t)+ · · · , (4.18)

where H̃e−ph = (1/ih̄)He−ph and the initial condition is assumed to be diagonal and
uncoupled, ρ(μ ,μ ′,0) = ρ(μ ,0) = ρ (0)(μ ,t) = f0(k0)Peq(nq), where f0 and Peq are
the initial distribution functions of electrons and phonons, respectively.

We are only interested in the diagonal elements, whose time-evolution is given
by (4.18), since, first, we want to evaluate expectation values of electronic quanti-
ties only and, second, they are diagonal in the electronic part of the wave function.
Furthermore, (4.18) is a closed equation for the diagonal elements of ρ(t), which is
a consequence of a diagonal initial condition and the fact that there are only initial
values of ρ at the right hand side of the perturbation expansion. Remember that we
have mentioned a similar effect in a somewhat different context in Sect. 2.3, i.e. that
the closed equation for the diagonal elements of the PME can be obtained from the
general form of the single-particle QME (4.6) by working in the basis of the single-
particle Hamiltonian and by approximating the collision superoperator with Fermi’s
golden rule. The fact that each term in the perturbation expansion starts from a
diagonal state and have to end up in some other (or the same) diagonal state means
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that only even order terms in the expansion will survive. This can be explained by
the fact that each interaction Hamiltonian (being linear in creation/destruction oper-
ators) will either create or destroy a phonon in that state (left or right) of the initial
diagonal outer product of states (since in general ρ = ∑ |α〉〈α|) that is on the same
side as that interaction Hamiltonian, after we expand the commutation relations. So
to maintain the diagonalization we have to balance each absorption/emission at one
of the sides by either the opposite process (emission/absorption) on the same side,
or by the same process (absorption/emission) at the opposite side. This can only be
achieved by having an even number of interaction Hamiltonians in a particular term
in the perturbation expansion.

Equation (4.18) has several advantages over the steady state PME with Fermi’s
golden rule (of course within the limits of its applicability), beside the fact it can ac-
tually handle the transient regime. It is able to model quantum transitions of a finite
duration and, because of the basis used, the acceleration of the plane waves during
that time. The former ensures that the processes where the subsequent scattering
effects begin before the previous ones have finished are accounted for (multiple col-
lisions), while the latter ensures that the intracollisional field effect is not neglected.
This approach also relaxes the constraint of the strict energy conservation during
collisions, especially at short timescales. One of the disadvantages is that the trace
over many-phonon degrees of freedom has to be taken in (4.18) [18].

2.5 Monte Carlo Solution to the QME

Using the Monte Carlo stochastic technique to solve the semiclassical BTE [30–33]
is very common today, since it provides very accurate results (without using ex-
tensive approximations to make the problem numerically tractable), while the
computational time is no more a bottleneck considering the availability of com-
puting resources. The same idea of solving the semi-classical transport equation
stochastically, instead of directly numerically, can be applied to the QME. In this
section we will give a brief review of the ways this can be done in the case of a
single-electron QME where we seek solutions (steady state and transient) to the di-
agonal elements of the density matrix. They will be algorithmically compared with
the semiclassical Monte Carlo and shown to bear many similar characteristics, as
far as the implementation is concerned.

2.5.1 The Steady-State PME for Inhomogeneous Devices

As has been shown in Sect. 2.3, the PME can be successfully applied to a certain
class of problems which nowadays have high importance due to the down-scaling
of electronic devices. The main equation of that section (4.13), which is a linear
steady state equation for the occupations of levels with source terms modeling
injection/extraction from the contacts, can be solved by using the Monte Carlo
method [16]. For comparison purposes, let us write the standard BTE [33]
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d f (k,r, t)
dt

+
1
h̄

∇kE(k)∇r f (k,r,t)+
F
h̄
·∇k f (k,r, t) =

∂ f (k,r, t)
∂ t

∣
∣
∣
∣
Coll

. (4.19)

Diagonal elements of the density matrix from the PME (4.10), pn(t) = ρn,n(t) (n is a
full set of basis quantum numbers), correspond to the distribution function f (k,r, t)
in (4.19), while the right hand side of (4.10) corresponds to the right hand side of
(4.19). The main difference is in the drift and diffusion terms (due to the external
field and spatial inhomogeneity) present in (4.19). Their absence from (4.10) is a
consequence of a specific basis chosen for the density matrix, which diagonalizes
the total potential consisting of the Hartree potential and the potential due to the ex-
ternal field. Although the BTE is most often used in the form given by (4.19), it can
also be cast in the form without those two terms by a change in coordinates, from the
phase space variables (r,k) into the collision-free trajectories (path variables) [34].
So, to solve the PME we can use the conventional Monte Carlo procedure, used to
solve the standard BTE (4.19), but without the free-flight part.

To better understand the relationship between (4.10) and (4.19) it can be shown
that they are both limiting cases, but at the opposite ends of the domain [16]. As al-
ready mentioned in Sect. 2.3, the PME, being diagonal and therefore neglecting the
off-diagonal elements, is justified for the quasidiagonal initial state. As shown by
Van Hove [25], it is the state obtained by mixing the eigenstates of the unperturbed
Hamiltonian, but only in a very narrow energy range (amplitudes are non-zero only
for a very narrow range of energies of the states being mixed). Therefore, those
states are highly delocalized. This physically corresponds to our assumption of de-
vices much smaller than the dephasing length in the contacts, such that injecting
electrons appear to them as spatially delocalized (but energetically very localized)
wave packets, plane waves being the limiting case. There is one more group of
states for which the diagonal form of the transport equation is justified and they
are spatially very localized states, formed by linear combinations of eigenstates of
the unperturbed Hamiltonian with amplitudes varying slowly with the energy. This
opposite limit is satisfied by the BTE, which is therefore diagonal in the real space
(the PME is diagonal in the wave vector space).

Finally, the implementation procedure would go as follows [16]:

• Electrons are initialized into the eigenstates |μ〉, where μ is a full set of quantum
numbers for the open system considered, according to the thermal equilibrium
occupations as determined by the solution to the ballistic problem (no scattering).

• The time step is chosen and all transition probabilities are calculated. Scat-
tering probability Pscatter is proportional to the transition rates determined by
Fermi’s golden rule, while injection/extraction probabilities (the processes that
can change the number of particles in the open system) Pin/out are propor-
tional to the injection/extraction rates. Scattering or extraction events are selected
according to the generated random number.

• If scattering is selected then the final state is chosen according to the final density
of states and the matrix elements connecting the initial and final states, just like
in the conventional Monte Carlo procedure. If extraction (exit through a contact)
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is selected, the electron is simply removed. After all particles are processed, new
particles are added to the states according to Pin and the drifted Fermi–Dirac
distribution in the injecting contacts.

• After a few Monte Carlo steps the occupations of states, obtained from the
Monte Carlo, are used to update the potential and wave functions with the
Schrödinger/Poisson solver. The frequency of this update is determined by
the plasma frequency of the whole device. The new potential is treated as a sud-
den perturbation which redistribute electrons from the old states |μ(old)〉 to the
new states |μ (new)〉 according to the probability given by |〈μ(new)|μ (old)〉|2.

2.5.2 A Single-Electron QME in Homogeneous Bulk

The explanation of the similarity of (4.18) with the BTE can proceed by remember-
ing what we said in Sect. 2.5.1, about the BTE written in the path variables, when it
has the following form (after the drift-diffusion terms have disappeared)

f (t) = f (0)+Pi f −Po f = f0 +Pi f0−P0 f0 +PiPi f0−PiP0 f0−P0Pi f0 +P0P0 f0 + · · · ,
(4.20)

where Pi and Po are the integral operators for scattering “in” and “out”. This equation
is of the same general form as (4.18) and so similar Monte Carlo procedures can
again be used to solve both equations, as will be outlined below.

The Monte Carlo algorithm to solve (4.18) has several novelties comparing to
the one explained in Sect. 2.5.1 [20]. Beside the initialization and the standard ran-
dom selections of the type of the scattering process (in/out scattering and the type
of scattering) like in the conventional Monte Carlo, here we have several new ran-
dom selections due to the perturbation expansion. First, there is a selection of the
perturbative order (just the even ones, as shown previously), second, the selection
of n/2 times where the first interaction Hamiltonians of each quantum process (a
quantum process is defined as a pair of H̃e−ph’s for a distinct q) are to be evaluated
and, third, as already pointed out the average over the phonon variables q have to be
performed (equivalent of taking the trace over the phonon degrees of freedom), for
which a separate random number is reserved. So far, this is the same for both (4.18)
and (4.20). The additional steps for the quantum case would be to select the side of
ρ(0) where each process starts and the time for the second H̃e−ph in the process.

The restoration of this quantum Monte Carlo algorithm to the standard one, con-
sisting of periods of free flights interrupted by scattering events, can be achieved
by introducing a quantum analog of the self-scattering in the standard Monte Carlo
algorithm, that makes scattering rates constant [35,36]. That can be achieved by the
following transformation [19, 20]

ρ(t)→ exp

⎛

⎝

t∫

t0

γ(t1)dt1

⎞

⎠ρ(t), (4.21)
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where ρ is understood to represent diagonal elements ρμ as before. For constant
γ = 1/τ and t0 = 0 we have ρ→ e(t/τ)ρ , which gives the following equation instead
of (4.18)

ρ(t) = e−(t/τ)
[

ρ0 +
(

H̃H̃ +
1

2τ

)

ρ0− H̃ρ0H̃− H̃ρ0H̃ + ρ0

(

H̃H̃ +
1

2τ

)

+ · · ·
]

.

(4.22)

In this concise notation the integral signs as well as argument lists and subscripts
are dropped, and the commutation relations are expanded. This equation is actu-
ally equal to (4.18), since the damping factor e−(t/τ) is going to cancel with all the
factors 1/2τ when all the integration and summations are performed. Nevertheless,
this form makes the quantum Monte Carlo very similar to the standard ensemble
Monte Carlo, consisting of periods of free flights interrupted by scattering events.
The change to the previously explained algorithm is that the times selected for the
first H̃ in each process is separated by a constant time τ , the “free-flight” time, but
only a few events will actually be quantum processes (scattering events) with a def-
inite q. Although this procedure does not really contribute to the physical side of
the problem, the fact that it is made similar to the semiclassical approach makes
comparison with it much more transparent.

A representative result of the application of this algorithm and a comparison with
the semiclassical Monte Carlo is shown in Fig. 4.2 [20]. We see a clear discrepancy

Fig. 4.2 Drift velocity overshoot in silicon. The result of the quantum Monte Carlo technique is
shown with the solid line, while the semiclassical result is shown with the dashed line. Reprinted
with permission from [20], C. Jacoboni, Semicond. Sci. Technol. 7, B6 (1992). c©1992 IOP
Publishing Ltd
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in the drift velocity overshoot between the two techniques, which is attributed to
the intracollisional field effect favoring transitions oriented along the field direction,
comparing with the standard isotropic cross section.

3 Reduced Many-Particle QMEs

The reduced many-particle density matrix and the corresponding QME by its
complexity fall between the single-particle and the full many-particle cases. This
contributes to its flexibility, allowing us to find the optimal balance between the
accuracy of modeling important physical processes in the open system and the
computational complexity that results from including a large number of degrees
of freedom. In this section we will first derive the formal, exact equation of motion
for the reduced density matrix, the Nakajima–Zwanzig equation, and then introduce
several approaches that make this equation more tractable for practical applications.

3.1 The Nakajima–Zwanzig Equation

Here, we will formally derive the Nakajima–Zwanzig equation for an exact reduced
many-particle system. As already mentioned in Sect. 1 we are only interested in the
time evolution of the system. Therefore, starting from (4.4) we need to trace out all
the environmental degrees of freedom. This can be formally done by introducing a
projection superoperator pair P andQ

Pρ(t) = ρE ⊗TrE(ρ(t)) = ρE ⊗ρS(t), Qρ(t) = ρ(t)−Pρ(t), (4.23)

where ρ(t) is the total density matrix, ρS(t) the density matrix of the system and
ρE(t) represents the density matrix of the environment. Accordingly, we can split
the Hamiltonian and the Liouvillian of the total system into three parts

H = HS + HE + HI , L= LS +LE +LI, (4.24)

where by index I we represent the interaction between the system and environment.
Here, it is to be understood that each part acts in its corresponding Hilbert space (or
Liouville space, for L), e.g.

H = IE ⊗HS + HE⊗ IS + HI , HI = ∑
i

Ai⊗Bi, (4.25)

where Iα is the identity operator in the α-subspace, and A and B are operators that act
on the environment and system Hilbert spaces, respectively. The form of interaction
in (4.25) is the most general one. By acting with projection operators (4.23) on (4.4)
we get a system of two equations, one for Pρ and one for Qρ . Upon formally solving



4 Quantum Master Equations in Electronic Transport 265

it for the relevant part Pρ we arrive at the formally exact equation of motion for the
density matrix, the Nakajima–Zwanzig equation2 [14, 37, 38]

d
dt
Pρ(t) = − iPL(t)Pρ(t)−

∫ t

0
dsK(t,s)Pρ(s)

− iPL(t)G(t,0)Qρ(0), (4.26)

where the convolution or memory kernelK is

K(t,s) = PL(t)G(t,s)QL(s)P , G(t,s) = T← exp

[

−i
∫ t

s
ds′QL(s′)

]

, (4.27)

with T← being the time ordering operator which sorts the operators to the right of it
according to increasing time argument from right to left.

Equation (4.26) is not very useful for practical applications in this form because
it is very complex. It contains all orders of interaction HI and some memory terms,
which makes it an exact non-Markovian QME. Memory terms are incorporated
through the non-local memory kernel, the integral over past times [0, t] and through
the explicit dependence on the initial conditions in the second and third term. In the
next section we will show some common approximations that are used to derive an
approximate (to the second order in interaction) Markovian QME. Further modifi-
cation to (4.26) that is commonly done is to choose the projection operator P such
that the third term is canceled in the situations when the initial state of the total sys-
tem is uncoupled ρ(0) = ρE(0)⊗ρS(0). This is achieved if Pρ is induced by ρE(0)
in (4.23) because

Qρ(0) = ρ(0)−Pρ(0) = ρ(0)−ρE(0)⊗ρS(0) = 0. (4.28)

Now (4.26) is just

d
dt
Pρ(t) =−iPL(t)Pρ(t)−

∫ t

0
dsK(t,s)Pρ(s). (4.29)

To finally obtain the reduced dynamics described by ρS(t) we have to take the trace
over environmental variables TrE(Pρ(t)).

3.2 The Born–Markov Approximation

Now, we will briefly sketch how to derive an approximate Markovian QME that
ultimately lead to a QME whose time-evolution generator (equivalent to L in (4.4))

2 In the following we set h̄ = 1.
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satisfies the quantum dynamical semigroup property, meaning that if we define a
dynamical mapW(t) as

ρS(t) =W(t)ρS(0), (4.30)

its property is

W(t1)W(t2) =W(t1 + t2). (4.31)

This defines a Markovian evolution and the necessary microscopic conditions for
it will be stated in the following. The generator of this dynamical map can be
defined as

W(t) = exp(Ft) ,

d
dt

ρS(t) = FρS(t), (4.32)

from which it follows that the time evolution generator must be time-independent
in order to have a Markovian QME.

The Born approximation is justified for weak coupling. This coupling is char-
acterized by the interaction Hamiltonian HI , which may refer to the coupling to
reservoirs, phonons and everything else that can be encountered in real electronic
devices. Since we assume that the coupling is weak we can keep only terms up to the
second order in HI in (4.29). Higher order interactions are contained in the memory
term K in the integral in (4.29) and in order to keep just the second order term we
need to have LI in K appearing twice at most. To achieve that we can approximate
the propagator G(t,s) with

G(t,s) = T←exp

[∫ t

s
ds′Q(LS(s′)+LE(s′)

)
]

, (4.33)

which corresponds to leaving only zeroth order term in LI(t). The Born approxima-
tion may be restated in several equivalent ways, depending on the way of derivation
of final equations. The most obvious way, just mentioned, is to explicitly keep terms
only up to the second order in interaction [15]. Equivalently, we can assume that,
due to the weak-coupling, the density matrix of the system is always factorized dur-
ing the evolution as [14]

ρS(t) = ρE ⊗ρS(t) (4.34)

and that the density matrix of the reservoir is only negligibly affected by the inter-
action. The third way is somewhat less formal and is connected to the quantum
mechanical scattering theory [22]. A variation of the Neumann series method,
known as the Born series in this context, is used to approximate the form of the
wave function after the scattering. This is also used in Fermi’s golden rule, to
calculate the transition rates which are valid in the weak-coupling and long-time
limits.
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The Markovian approximation would proceed by first replacingPρ(s) by Pρ(t)
in (4.29), thus removing any dependence at time t on the past states, for s < t,

d
dt
Pρ(t) =−iPL(t)Pρ(t)−

∫ t

0
dsK(t,s)Pρ(t). (4.35)

This equation (in other forms and/or specific basis) is called the Redfield equa-
tion [14, 15, 39]. Second, there is an integral left which depends on the initial
conditions, or in other words the interval between the present and initial states. To
get rid of this we make a simple substitution s→ t − s and let the upper limit of
integration go to infinity, which gives us

d
dt
Pρ(t) =−iPL(t)Pρ(t)−

∫ ∞

0
dsK(t, t− s)Pρ(t). (4.36)

These two approximations, that make up the Markovian approximation, are possible
provided τE � τS, where τE is the environmental relaxation rate and τS the open
system relaxation rate. This means that the time evolution can be coarse-grained
such that ρS(t) is almost constant during τE , while the integral in (4.36) vanishes
fast with decreasing t− s and, therefore, the Markovian approximation is justified.

Proceeding with some further less significant modifications to (4.36) we arrive
at the most general form of the generator of the quantum dynamical semigroup
[14, 15]. It constitutes the Lindblad form of the QME for an open system [40]

d
dt

ρS(t) =−i [H,ρS(t)]+∑
k

γk

(

AkρsA
†
k−

1
2

A†
kAkρS− 1

2
ρSA†

kAk

)

, (4.37)

where H is the Hamiltonian that generates a unitary evolution, consisting of the
system Hamiltonian and corrections due to the system–environment coupling, and
Ak’s are the Lindblad operators that describe the interaction with the environment in
the Born–Markov limit.

3.3 The Conventional Time-Convolutionless Equation of Motion

The Nakajima–Zwanzig equation (4.26), that relies upon the use of the projection-
operator technique, has several shortcomings that are the motivation for the follow-
ing sections. Various variants of the projection-operators have been used in the past
to study a range of physical systems. Argyres and Kelley [41] applied it to a theory
of linear response in spin-systems, Barker and Ferry [42] to quantum transport in
very small devices, Kassner [43] to relaxation in systems with initial system-bath
coupling, Sparpaglione and Mukamel [44] to electron transfer in polar media, fol-
lowed by a study of condensed phase electron transfer by Hu and Mukamel [45],
while Romero-Rochin and Oppenheim [46] studied relaxation of two-level systems
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weakly coupled to a bath. However, this approach is limited by two computationally
intensive operations needed to arrive at the final, reduced, density matrix of the open
system: the time-convolution integral containing the memory kernel and the partial
trace over environmental variables, TrE(Pρ). Specifically, these limits would be
lifted by applying the Markov and Born approximations of Sect. 3.2, respectively,
because then the time-convolution disappears and the trace is a trivial operation
since the equation for Pρ is already well factorized into the environmental and sys-
tem parts.

Going beyond the Born–Markov approximation we have to think of different
methods of leveraging the computational burden. In line with that, Tokuyama and
Mory [47] proposed a time-convolutionless equation of motion in the Heisenberg
picture. This was extended to the Schrödinger picture by Shibata et al. [48, 49]
after which a stream of research appeared. Saeki analyzed the linear response of
an externally driven systems coupled to a heat bath [50] and systems coupled to
a stochastic reservoir [51, 52]. Ahn extended the latter to formulate the quantum
kinetic equations for semiconductors [53], and a theory of optical gain in quantum-
well lasers [54]. Later, he treated noisy quantum channels [55] and quantum infor-
mation processing [56]. Chang and Skinner [57] applied the time-convolutionless
approach to analyze relaxation of a two-level system strongly coupled to a harmonic
bath, while Golosov and Reichmann [58] analyzed condensed-phase charge-transfer
process. In the following, we will give a brief derivation of the time-convolutionless
equation of motion and point out some of its shortcomings, resulting from the fact
that it is still based on the projection-operator technique.

Let us choose some arbitrary, but proper and constant in time, environmental
density matrix ρ̃E as a generator for the time-independent projection operator (4.23).
This means that TrE(ρ̃E) = 1 and therefore

TrE(Pρ) = TrE(ρ̃E) ·TrE(ρ) = TrE(ρ) = ρS. (4.38)

The two equations for the projection operators P and Q are

d
dt

(Pρ(t)) =−iPL(t)ρ(t) =−iPL(t)Pρ(t)− iPL(t)Qρ(t), (4.39)

d
dt

(Qρ(t)) =−iQL(t)ρ(t) =−iQL(t)Qρ(t)− iQL(t)Pρ(t). (4.40)

A formal solution of (4.40) is

Qρ(t) =−i

t∫

0

dt ′G(t,t ′)QL(t ′)PU(t ′,t)ρ(t)+G(t,0)Qρ(0), (4.41)

where for t > t ′

G(t,t ′) = T←exp

(

−i
∫ t

t′
dsQL(s)Q

)

,

U(t ′,t) = T→exp

(

i
∫ t

t′
dsL(s)

)

. (4.42)
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The superoperator U(t,t ′) is defined by

ρ(t) = U(t, t0)ρ(t0),

U(t, t ′) = Θ(t− t ′)T← exp

⎛

⎝−i

t∫

t′
dsL(s)

⎞

⎠+Θ(t ′ − t)T→ exp

⎛

⎝i

t′∫

t

dsL(s)

⎞

⎠ .

(4.43)

By using it we make (4.41) time-local, which is the essence of this approach. Equa-
tion (4.41) can be rearranged in the following way

D(t;0)Qρ(t) = [1−D(t;0)]Pρ(t)+G(t,0)Qρ(0), (4.44)

where D(t;0) is defined as

D(t;0) = 1 + i
∫ t

0
dt ′G(t,t ′)QL(t ′)PU(t ′, t). (4.45)

Assuming that D(t;0) is invertible, (4.41) finally becomes

Qρ(t) =
[D(t;0)−1−1

]Pρ(t)+D(t;0)−1G(t,0)Qρ(0). (4.46)

Using the last equation in (4.39) we obtain

d
dt

(Pρ(t)) =−iPL(t)D(t;0)−1Pρ(t)− iPL(t)D(t,0)−1G(t,0)Qρ(0). (4.47)

The last step that is left to obtain the conventional time-convolutionless equation of
motion is to take the trace over environmental variables of (4.47), which gives us

d
dt

ρS(t) = −iTrE
[PL(t)D(t;0)−1Pρ(t)

]− iTrE
[PL(t)D(t;0)−1G(t,0)Qρ(0)

]

= −iTrE
[L(t)D(t;0)−1ρ̃E ⊗ρS(t)

]− iTrE
[L(t)D(t;0)−1G(t,0)Qρ(0)

]

= −iTrE
[L(t)D(t;0)−1ρ̃E

]
ρS(t)− iTrE

[L(t)D(t;0)−1G(t,0)Qρ(0)
]
.

(4.48)

This conventional form of the time-convolutionless equation of motion has three
shortcomings. First, it explicitly depends on the choice of ρ̃E that induces the pro-
jection operator, although the final result will not depend on it. Second, we have
to evaluate complicated matrices U , G and D involving all the degrees of free-
dom in the system+environment, but at the end we will extract only those degrees
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belonging to the system, by taking the trace. Third, this approach depends on
invertibility of D, which might be difficult to fulfill. These issues will be addressed
in the following sections.

3.4 The Eigenproblem of the Projection Operator

The projection operator, as defined in (4.38), is idempotent (P2 = P) because

P2ρ = P (Pρ) = ρ̃E ⊗TrE [ρ̃E ⊗TrE (ρ)]

= ρ̃E ⊗TrE (ρ̃E)TrE [TrE (ρ)] = ρ̃E ⊗TrE (ρ) = Pρ . (4.49)

Therefore, it has two eigenvalues, 0 and 1, and since they are both real we can con-
clude thatP is also hermitian,P =P†. In analogy with the notion that system states
are members of the respective Hilbert space, while operators (like ρ) act on it, we
can introduce a Liouville space whose members are operators acting on the Hilbert
space, while superoperators (like L) act on it. To complete the definition we have to
define the inner product which is conveniently done as (A,B) = Tr

(

A†B
)

, where A
and B are some operators belonging to the Liouville space. So, if the Hilbert spaces
are HS, HE and the composite space HS+E = HE ⊗HS, the respective Liouville
spaces are H2

S, H2
E and H2

S+E , where the dimensionality of Liouville spaces with
respect to that of the corresponding Hilbert spaces is obvious. It follows that P is a
superoperator acting on H2

S+E , which is d2
Ed2

S-dimensional. By construction (4.23)
the image space of P corresponds to H2

S, so that the subspace of P spanned by the
degenerate eigenvalue 1 is isomorphic toH2

S. We can write

H2
S+E =

(H2
S+E

)

P=1⊕
(H2

S+E

)

P=0 , (4.50)

where
(H2

S+E

)

P=1 is the d2
S-dimensional unit subspace and

(H2
S+E

)

P=0 is the
d2

S

(

d2
E −1

)

-dimensional zero subspace of the eigenspace ofH2
S+E .

We can always arrange the eigenbasis of P ,
{|n〉 |n = 1, . . . ,d2

Ed2
S

}

, such that the
first d2

S basis vectors span
(H2

S+E

)

P=1 and therefore

P =
d2

S

∑
n=1
|n〉〈n| . (4.51)

The eigenstates of the composite space HS+E are constructed as |iα〉 = |i〉⊗ |α〉,
from which follows that the eigenstates |n〉 of H2

S+E can be written by using four
quantum numbers, i.e. as linear combinations of |iα, jβ 〉. Here, states |i〉 belong to
the environment, while states |α〉 to the system. Furthermore, if we define P by
using a uniform density matrix

ρE = d−1
E ·1dE×dE , (4.52)
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we can avoid mixing states with different α and β to obtain a given |n〉 [59]. One
finds that the states defined as

∣
∣
∣αβ

〉

=
1√
dE

dE

∑
i=1

|iα, iβ 〉 (4.53)

constitute an orthonormal basis within the unit subspace of P , i.e.

P
∣
∣
∣αβ

〉

=
∣
∣
∣αβ

〉

,
〈

αβ |σγ
〉

= δασ δβ γ . (4.54)

Finally, we can write

P =
dS

∑
α ,β=1

∣
∣
∣αβ

〉〈

αβ
∣
∣
∣=

1
dE

dS

∑
α ,β=1

(
dE

∑
i=1
|iα, iβ 〉

)(
dE

∑
j=1
〈 jα, jβ |

)

. (4.55)

Since

ρ =
dE

∑
i, j=1

dS

∑
α ,β=1

ρ iα
jβ |iα〉 〈 jβ |=

dE

∑
i, j=1

dS

∑
α ,β=1

ρ iα , jβ |iα, jβ 〉 , (4.56)

we now have representations for both P and ρ , which allows us to explicitly calcu-
late Pρ (with the help of 〈iα, jβ |pσ ,qν〉 = δipδ jqδασ δβ ν) as

Pρ =
1√
dE

dS

∑
α ,β=1

(TrEρ)αβ
∣
∣
∣αβ

〉

=
dS

∑
α ,β=1

(Pρ)αβ
∣
∣
∣αβ

〉

, (4.57)

where

(Pρ)αβ =
(TrEρ)αβ
√

dE
. (4.58)

Equation (4.58) defines an isomorphism between
(H2

S+E

)

P=1 and H2
S that allows

us to calculate the trace over environmental variables by effectively doing the basis
transformation (4.53).

The conclusion of the previous paragraph is that by working in the eigenbasis
of P , as one of the possible eigenbasis of H2

S+E (4.50), from the beginning we can
avoid explicitly taking the trace over environmental variables at the end. In that
eigenbasis, given by (4.53) and completed for

(H2
S+E

)

P=0 (details in [59]), the total
density operator can be written as a d2

Sd2
E -dimensional column vector

ρ =
[

ρ1

ρ2

]

, (4.59)
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where ρ1 is d2
S-dimensional and ρ2 is d2

S

(

d2
E −1

)

-dimensional, while the projection
operators as d2

Sd2
E ×d2

Sd2
E matrices

P =

[

1d2
S×d2

S
0d2

S×d2
S(d2

E−1)
0d2

S(d2
E−1)×d2

S
0d2

S(d2
E−1)×d2

S(d2
E−1)

]

,

Q =

[

0d2
S×d2

S
0d2

S×d2
S(d2

E−1)
0d2

S(d2
E−1)×d2

S
1d2

S(d2
E−1)×d2

S(d2
E−1)

]

. (4.60)

We see that ρS = TrE(ρ) is given just by (using (4.58))

ρS =
√

dE ·ρ1. (4.61)

Similarly, any superoperatorA acting onH2
S+E is represented by

A=
[A11 A12

A21 A22

]

. (4.62)

Additionally, if an operator is a system operator, i.e. Asys = 1E ⊗AS, then it com-
mutes with P

PAsysρ = ρE ⊗TrE [(1E ⊗AS)ρ ] = ρE ⊗ASTrE ρ (4.63)

= (1E ⊗AS)(ρE ⊗TrEρ) =AsysPρ , (4.64)

which means that it is block-diagonal in the eigenbasis ofP . Furthermore, it is easily
shown that the upper left block matrix is just AS (see Appendix B of [61]), so that

A=
[AS 0

0 A2

]

. (4.65)

The above mentioned isomorphism between
(H2

S+E

)

P=1 andH2
S and the decom-

position of H2
S+E according to (4.50) are graphically shown in Fig. 4.3. Because of

the isomorphism (4.58, 4.61) density matrices of the form

ρ =
[

ρ1

0

]

(4.66)

are called “purely system states”, because they are completely determined by the
state of the system S and depend on the environment only in an average sense
(through the trace operation). On the other hand, density matrices for which ρ1 = 0
and ρ2 �= 0 we call “entangled states” because they carry microscopic connections
to the environmental states, beyond the point of easy separability like in the case
of “purely system states”. This can be seen by explicitly deriving the part of the
basis for

(H2
S+E

)

P=0, with the help of the Gram-Schmidt procedure (see Appendix
of [59] and, for more compact and explicit form, Appendix A of [62]).
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Fig. 4.3 Decomposition of
the total Liouville space
H2

S+E into the subspaces of
the projection operator P and
the isomorphism between the
unit subspace

(H2
S+E

)

P=1
and H2

S for an operator x
acting on HS+E . Reprinted
with permission from [60],
I. Knezevic and D. K. Ferry,
Phys. Rev. A 69, 012104
(2004). c©2004
The American Physical
Society

3.5 A Partial-Trace-Free Equation of Motion

We proceed by writing the conventional time-convolutionless equation of motion
from Sect. 3.3 in the basis of P derived in Sect. 3.4. The Liouville operator and the
time-evolution operator are given by the following block forms

L(t) =

[

L11(t) L12(t)

L21(t) L22(t)

]

, U(t,t ′) =

[

U11(t, t ′) U12(t, t ′)
U21(t, t ′) U22(t, t ′)

]

. (4.67)

The Liouville–von Neumann and equation for the time-evolution now have the fol-
lowing forms

dρ1

dt
= −iL11(t)ρ1(t)− iL12(t)ρ2(t),

dρ2

dt
= −iL21(t)ρ1(t)− iL22(t)ρ2(t) (4.68)

and

ρ1(t) = U11(t,t ′)ρ1(t ′)+U12(t, t ′)ρ2(t ′),

ρ2(t) = U21(t,t ′)ρ1(t ′)+U22(t, t ′)ρ2(t ′). (4.69)

The block matrix forms of G and D from (4.42) and (4.45) are

G(t, t ′) = T← exp

⎛

⎝−i

t∫

t′
dsQL(s)Q

⎞

⎠=

⎡

⎣

1 0

0 T← exp

(

−i
t∫

t′
dsL22(s)

)

⎤

⎦ ,

(4.70)
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D(t;0) = 1 + i

t∫

0

dt ′
[

1 0

0 G22(t,t ′)

][

0 0

L21(t ′) 0

][

U11(t ′, t) U12(t ′, t)
U21(t ′, t) U22(t ′, t)

]

=

⎡

⎢
⎣

1 0

i
t∫

0
dt ′G22(t,t ′)L21(t ′)U11(t ′,t) 1 + i

t∫

0
dt ′G22(t, t ′)L21(t ′)U12(t ′, t)

⎤

⎥
⎦ .

(4.71)

Since we need D−1(t;0), from (4.71) we obtain

D−1(t;0) =
[

1 0
−D−1

22 (t;0)D21(t;0) D−1
22 (t;0)

]

. (4.72)

As a final step we use all previously defined block forms of necessary operators and
superoperators, along with the equation of motion for Pρ (4.47) and the isomor-
phism (4.58) to obtain

dρS(t)
dt

= − i
[L11(t)−L12(t)D−1

22 (t;0)D21(t;0)
]

ρS(t)

− i
√

dEL12(t)D−1
22 (t;0)G22(t,0)ρ2(0). (4.73)

Equation (4.73) is a partial-trace-free time-convolutionless equation of motion for
the reduced density matrix ρS(t). It describes the evolution of the representation
basis of ρS. Working with representation matrices is a necessary condition of this
method and might help in the case when one is interested in numerical implemen-
tation. The increased transparency of working with representation forms may also
help when introducing various approximations in the exact equation of motion. Out
of those three problems, mentioned at the end of Sect. 3.3, there is still one remain-
ing. Namely, we still have the problem of evaluating the inverse of potentially large
matrix D−1

22 (t;0) (if it exists at all). The solution to that problem will be discussed,
among other things, in the next section.

3.6 Memory Dressing

Let us explicitly write the equations of motion for the density operator ρ in the
eigenbasis ofP from the previous section, i.e. within the partial-trace-free approach.
By using (4.47) and (4.46), or directly (4.73) for ρ1, we obtain

dρ1(t)
dt

= −i
[L11(t)−L12(t)D−1

22 (t;0)D21(t;0)
]

ρ1(t)

−iL12(t)D−1
22 (t;0)G22(t,0)ρ2(0),

ρ2(t) = −D−1
22 (t;0)D21(t;0)ρ1(t)+D−1

22 (t;0)G22(t,0)ρ2(0), (4.74)
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where from (4.70) and (4.71) and by formally differentiating D(t;0)’s submatrices
with respect to time we have

G22(t,0) = T← exp

⎛

⎝−i

t∫

0

dsL22(s)

⎞

⎠ ,

dD21(t;0)
dt

= −iL22(t)D21(t;0)+ iD21(t;0)L11(t)+ iD22(t;0)L21(t),

dD22(t;0)
dt

= −iL22(t)D22(t;0)+ iD22(t;0)L22(t)+ iD21(t;0)L12(t),

D21(0;0) = 0 , D22(0;0) = 1, (4.75)

where in the last line the initial conditions are given. Taking the time derivative of
the equation of motion for ρ1(t) in (4.69) and comparing those two equations with
(4.74) we obtain the following relations for the representation of time evolution
operator U(t,0)

dU11(t,0)
dt

= −i
[L11(t)−L12(t)D−1

22 (t;0)D21(t;0)
]U11(t,0),

dU12(t,0)
dt

= −i
[L11(t)−L12(t)D−1

22 (t;0)D21(t;0)
]U12(t,0)

−iL12(t)D−1
22 (t;0)G22(t,0),

U21(t,0) = −D−1
22 (t;0)D21(t;0)U11(t,0),

U22(t,0) = D−1
22 (t;0) [G22(t,0)−D21(t;0)U12(t,0)] . (4.76)

These are generic time-convolutionless equations of motions, the form of which re-
sults from using the specific basis within the partial-trace-free-approach. They have
the general feature of time-convolutionless equations that U21 and U22 are expressed
in terms of U11 and U12. Formally, by solving (4.76) (for which we first have to
solve (4.75)) we arrive at the final solution for the equation of motion of the reduced
density operator ρS. However, this is a very difficult problem due to the sizes of the
block matrices (the largest are at the position (2,2), being d2

S(d2
E −1)×d2

S(d
2
E −1)-

dimensional) and because we need to evaluate the inverse of the matrix D22 which
is in turn the solution of coupled equations for D21 and D22.

By inspection of (4.76) we see that we do not need all three large matrices G22,
D21 and D22 separately, but only the following combinations of them (we designate
each of them with a new letter)

R(t) =D−1
22 (t;0)D21(t;0),

S(t;0) =D−1
22 (t;0)G22(t,0), (4.77)
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where we left out the initial time in the argument list ofR(t;0) for convenience. By
using (4.75) we can derive the equations of motion for the matricesR and S

dR(t)
dt

= −iL22(t)R(t)− iR(t)L12(t)R(t)+ iR(t)L11(t)+ iL21(t), R(0) = 0 ;

dS(t;0)
dt

= −i [L22(t)+ iR(t)L12(t)]S(t;0) , S(0;0) = 1. (4.78)

Since we are really interested in the evolution of ρ1, due to its direct connection with
ρS via (4.61), we only need the time evolution matrices U11(t,0) and U12(t,0). So,

by starting from some initial state ρ(0)=
[

ρ1(0) ρ2(0)
]T

, we have a new system of
equations completely describing the time evolution of the reduced density operator
ρS, consisting of (4.78) and

dU11(t,0)
dt

= −i [L11(t)−L12(t)R(t)]U11(t,0) , U11(0,0) = 1 ;

dU12(t,0)
dt

= −i [L11(t)−L12(t)R(t)]U12(t,0)− iL12(t)S(t;0) , U12(0,0) = 0.

(4.79)

We see that by introducing R(t) and S(t;0) there is no more problem with the
cumbersome inverse matrix D−1

22 (t;0). The equations for U21(t,0) and U22(t,0),
which we do not need here, but are sometimes important, for example in calcu-
lating two-time correlation functions in electronic transport where U(t, t ′) for t ′ �= 0
are required [63–65], are

U21(t,0) =−R(t)U11(t,0) , U22(t,0) = S(t;0)−R(t)U12(t,0). (4.80)

The concept of memory dressing from the title of this section refers to R(t).
This is because R(t) always goes along with L12(t), which is the term represent-
ing physical interaction (as follows from the representation form (4.68)), in the
“quasi-Liouvillian”L11(t)−L12(t)R(t). So, it is a memory dressing of the physical
interaction. The self-contained non-linear equation of motion for the memory dress-
ing R(t) (first of (4.78)) is a matrix Riccati equation, often encountered in control
systems theory [66, 67]. It can be solved for R to an arbitrary order by using the
perturbation expansion, which also allows for a convenient diagrammatic represen-
tation [60].

4 Coarse-Graining for the Steady State Distribution Function

The purpose of this section is to derive the steady state distribution function for the
open system, by solving for ρS(t) in a ballistic device (no scattering) that is attached
to ideal contacts. We will show that, under these conditions, the distribution function
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is of Landauer-type. It says that the occupation of incoming states is fixed by the
respective contact, while that of outgoing states by the open system alone. Further-
more, since there is no scattering in the open system, the occupation will remain the
one determined by the contacts. We will use a coarse-graining procedure to approx-
imate the exact non-Markovian time evolution towards the steady state. At the end,
an interaction Hamiltonian, suitable for ideal contacts, will be constructed and used
to solve the approximate Markovian equation of motion.

4.1 The Exact Dynamics and the Coarse-Graining Procedure

By using (4.61) and (4.77) in (4.74), we get the following form for the exact equation
of motion for the reduced density matrix

dρS(t)
dt

=−i [L11−L12R(t)]ρS(t)− i
√

dEL12S(t;0)ρ2(0). (4.81)

We will restrict our attention to the problems for which the initial density matrix is
not correlated, i.e.

ρ(0) = ρE(0)⊗ρS(0). (4.82)

We see that when ρE(0) = ρE then ρ2(0) = 0 and there exists a subdynamics (ρS

does not depend on ρ2(0)). This is because P is also generated by ρE , so that ρ(0)
is an eigenstate of P and is of the form (4.66). Here, even though the environmental
density matrix is not uniform, it can be proven that the following connecting relation
holds

ρ2(0) =Mρ1(0) = dE
−1/2MρS(0), (4.83)

whereM in the eigenbasis of ρE(0) is given by (see Appendix A of [62])

Mi =

√

dE(dE + 1− i)
dE −1

(

ρ i
E(0)− 1

dE + 1− i

dE

∑
j=1

ρ j
E(0)

)

. (4.84)

So, in this more general case (for arbitrary ρE(0)) there still exists the subdynamics
in the following form

ρS(t) = [U11(t,0)+U12(t,0)M]ρS(0) =W(t,0)ρS(0), (4.85)

which is in agreement with the statement made by Lindblad [68] that the subdynam-
ics exists for an uncorrelated initial state. We can get a differential form of (4.85)
by combining (4.74) and (4.83)

dρS(t)
dt

=−i [L11−L12R(t)]ρS(t)− iL12S(t)MρS(0). (4.86)
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In general we can write

W(t,0) = T← exp

⎡

⎣

t∫

0

F(s)ds

⎤

⎦ , (4.87)

where F(t) is the generator ofW(t,0).
It is very difficult to solve for the reduced system dynamics (4.85), because of

the difficulties in obtaining W(t,0). We can either be content with a Markovian
approximation in the weak-coupling and van Hove limits [69], or by an expansion
up to the second or fourth orders in the interaction if we need a non-Markovian
approximation [14]. Although the weak-coupling limit has been used before to study
tunneling structures in the Markovian approximation [70, 71], it is not generally
applicable to nanostructures [70]. Here, we will apply an approximation beyond the
weak-coupling limit, by approximating the exact reduced system dynamics using
coarse-graining over the environmental relaxation time τ [72, 73]. This limits the
area of applicability to the open systems for which τ � τS, where τS is the open
system relaxation time, which is still a pretty wide area. For example, in typical
small semiconductor devices (quasi-ballistic), with highly doped contacts at room
temperature, the major energy relaxation mechanism is electron–electron scattering
in the contacts (relaxation time for electron–electron scattering is about 10 fs for
GaAs at 1019 cm−3 and room temperature [74], while about 150 fs for polar optical
phonon scattering [36]). Electron–electron relaxation will drive the environmental
distribution function to a drifted Fermi–Dirac distribution in a time interval τ ≈
10−100 fs, which is much shorter than the typical open system relaxation time for
these devices τS ≈ 1−10 ps.

The coarse-graining procedure proceeds by splitting the total evolution time in-
terval [0, t] into segments of length τ , [1,2, . . . ,n]× τ , and defining the average of
the generator ofW(t,0) over each interval

F j =
1
τ

( j+1)τ
∫

jτ

F(s)ds. (4.88)

This leads to the following connection between successive, discretized reduced den-
sity operators

ρS, j+1 = exp
(

τF j
)

ρS, j, (4.89)

which gives
ρS, j+1−ρS, j

τ
= F jρS, j (4.90)

after expanding the exponent for small τ . This is just a discretized version of the
exact equation of motion.
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There are three approximations applied in deriving (4.90). First, we don’t have
the information about the time evolution inside each τ-interval, but only at its ends.
Second, we cut the series after the first order in the expansion of exp

(

τF j
)

in order
to get (4.90). Third, the time ordering from the exact equation (4.87) is violated
at the τ time scale, which can be shown explicitly by using the Dyson series to
represent (4.87).

Finally, we will assume that the environmental state is nearly the same after every
interval τ during the transient, in other wordsF0 =F τ ≈F1≈ ·· · ≈Fn. This is also
the most trivial way of ensuring that the coarse grained generators F i’s commute
(commute in an average sense). For this to be satisfied we have to ramp up the
excitation (e.g. bias) to the system in small enough increments with sufficiently long
time between two increments so that the open system is able to reach steady state,
in the form of a drifted Fermi–Dirac distribution, after each small increment. This
condition is more a thought experiment than a real constraint, because we are only
interested in the steady state here. As the last step, we expand the discrete equation
(4.90) to the continuum (since τ is a small parameter) to obtain the final equation

dρS

dt
= F τ ρS(t). (4.91)

This equation is an approximate Markovian (because the generator F τ is constant
in time) QME for the reduced density matrix in the limit of small-increments/long-
pauses kind of ramping up the bias and we will use it to obtain the steady state
distribution function for arbitrarily large bias.

4.2 The Short-Time Expansion of F τ

The practical value of (4.91) is in the fact that F τ can be calculated using the ex-
pansion of F(t) in the small parameter τ around zero. By introducing a definition
F(t) =−iLeff−G(t), where Leff is an effective system Liouvillian and G a correc-
tion due to the system-environment coupling, expanding (4.85) and (4.86) up to the
second order in time and comparing coefficients it can be shown that (see Appendix
B of [62])

F(t) =−iLeff−2Λ t + O(t2), (4.92)

where Leff is a commutator superoperator generated by HS + 〈Hint〉, while Λ in the
basis αβ of the system’s Liouville space is given by

Λ αβ
α ′β ′ =

1
2

{

〈

H2
int

〉α
α ′ δ

β ′
β +

〈

H2
int

〉β ′
β δ α

α ′ −2∑
j, j′

(Hint)
j′α
jα ′ ρ

j
E (Hint)

jβ ′
j′β

−
(

〈Hint〉2
)α

α ′
δ β ′

β + 2〈Hint〉αα ′ 〈Hint〉β
′

β −
(

〈Hint〉2
)β ′

β
δ α

α ′

}

, (4.93)
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where ρ j
E are the eigenvalues of ρE(0) and 〈· · · 〉 ≡ TrE (ρE(0) · · · ). Λ contains

important information on the directions of coherence loss. It has been implicitly
defined previously [75], but only in the interaction (not Schrödinger) picture and for
〈Hint〉= 0.

If the following condition holds

‖Λ‖τ �‖Leff‖, (4.94)

then the short-time expansion of F is valid and

F τ =−iLeff−Λτ, (4.95)

which gives the final coarse-grained Markovian QME for the reduced density matrix

dρS(t)
dt

= (−iLeff−Λτ)ρS(t). (4.96)

We have already said that this coarse-grained Markovian approximation is valid if
the environmental relaxation time τ is much smaller than the system relaxation time
(corresponding to 1/‖Λ‖τ), or

‖Λ‖τ2� 1, (4.97)

which, along with (4.94), gives in total

‖Λ‖τ2�min{1,‖Leff‖τ} . (4.98)

4.3 Steady State in a Two-Terminal Ballistic Nanostructure

In this section we will apply the main equation (4.96) to calculate the steady state
distribution function for a two-terminal ballistic nanostructure attached to ideal
contacts. By ideal contacts we mean contacts that behave like black bodies with
respect to the emission/absorption of electrons. Therefore, they absorb all electrons
coming from the open system. The consequence is that, as already mentioned, the
occupation of states coming from the contacts is fixed by them, while the occu-
pation of outgoing states is fixed by the open system. This gives a Landauer-type
distribution function and specifically here, since the open system region is ballistic,
the occupation of the incoming and outgoing states is the same and fixed by the
injecting contact.

4.3.1 The Open System Model

Schematic of our two-terminal nanostructure is shown in Fig. 4.4. The device is
biased negatively such that the negative polarity is at the left contact. All open
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Fig. 4.4 Schematic of the two-terminal ballistic nanostructure, negatively biased at the left con-
tact, with the boundaries between the open system and contacts shown at xL and xR, and with the
graphical representation of the wave function injected from and the hoping type interaction with
the left contact. It is similar for the wave function and interaction for the right contact

system eigenenergies εk above the bottom of the left contact have two eigenfunc-
tions (double-degeneracy), one for the positive wave vector (ψk, injected from the
left contact) and one for the negative wave vector (ψ−k, injected from the right con-
tact). The rest of the energy levels, made up of quasibound states that lay between
the bottoms of the two contacts, have only one wave function for the states injected
from the right contact and completely reflected. For doubly-degenerate scattering
states we have the following asymptotic wave functions (assuming that the active
region between xL and xR is wide enough)

ψk(x) =

{

eikx + r−k,Le−ikx, x < xL

tk′,Leik′x , x > xR

,

ψ−k(x) =

{

e−ik′x + rk′,Leik′x , x > xR

t−k,Le−ikx , x < xL

, (4.99)

where t and r are the transmission and reflection coefficients, respectively, while k
and k′ are the wave vectors for the same energy level εk measured from the bottom
of the left and right contacts, respectively.

In the formalism of second quantization the non-interacting many-body Hamil-
tonian of the open system is given by (considering only scattering states in the
following)

HS = ∑
k>0

ωk

(

d†
k dk + d†

−kd−k

)

, (4.100)

where ωk = εk/h̄ and d±k and d†
±k are the destruction and creation operators, respec-

tively, for the open system states ψ±k. The many-body effect that this Hamiltonian is
able to model is the Pauli exclusion principle. Considering that the contacts are ideal,
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as explained above, the interaction Hamiltonian is modeled as a one-way coupling
(for the particles that are injected only), while in the other way the electrons are free
to propagate, because the contacts have ideal absorption characteristics. In other
words, we do not have to enforce the Pauli exclusion principle (to “make room”) by
explicitly creating one electron in the contacts after destroying it in the open system
region. So, the interaction Hamiltonians are given by

HL
int = ∑

k>0

Δkd†
k ck,L + h.c.,

HR
int = ∑

k>0

Δ−kd†
−kc−k,R + h.c., (4.101)

where c±k,L/R and c†
±k,L/R are the destruction and creation operators, respectively,

for the ±k states in the left/right contact and the injection rates are given by

Δk =
h̄k

m‖ψk‖2 , Δ−k =
h̄k′

m‖ψ−k‖2 , (4.102)

where ‖ψk‖2 =
∫ xR

xL
|ψk(x)|2dx.

In Fig. 4.4 there are only HL
int and ψk graphically represented, but the situation is

similar for the right contact.

4.3.2 Steady State Distribution Functions

Since the interaction Hamiltonians (4.101) are linear in the contact creation and
destruction operators, we conclude that 〈HL/R

int 〉 = 0, which gives us the following
equations

Leff = LS,
(

Λ L/R
)αβ

α ′β ′
=

1
2

[

〈(HL/R
int )2〉αα ′δ β ′

β + 〈(HL/R
int )2〉β ′β δ α

α ′
]

−∑
j, j′

(HL/R
int ) j′α

jα ′ρ
j

L/R(HL/R
int ) jβ ′

j′β . (4.103)

The quantities that we need to evaluate first are (for the left contact)

〈(HL
int)

2〉= ∑
k>0

Δ 2
k

[

f L
k dkd†

k +
(

1− f L
k

)

d†
k dk

]

, (4.104)

which gives a contribution of the form Λ αβ
αβ , and

∑
j, j′

(

HL
int

) j′α
jα ′ ρ

j
L

(

HL
int

) jβ ′
j′β = ∑

k>0

Δ 2
k

[(

1− f L
k

)

(d†
k )β ′

β (dk)α
α ′+ f L

k (dk)
β ′
β (d†

k )α
α ′
]

,

(4.105)

which gives a contribution of the form Λ αα
β β . It is similar for the right contact.
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Quantities f L/R
±k define the drifted Fermi–Dirac distribution function in the

contacts, as a consequence of the current flowing through the device. They take into
account the feedback of the device under applied bias on the contacts and ensure that
the charge neutrality and current continuity are satisfied near the device/contacts
boundaries [16, 17]. The left contact distribution function is given by

f L
±k =

1

exp

{
h̄2[(±k−kd)2−k2

F ]
2mkBT

}

+ 1
, (4.106)

where kd is the drift wave vector. Here, there is a common kd for both contacts
(since they carry the same current), but in a more general multi-terminal case there
will be one drift wave vector for each contact, defined by the current density Jl

through the l-th contact by kl
d = mJl/nlqh̄, where nl is the charge density of the l-th

contact. This is an additional parameter that has to be determined self-consistently,
by an additional equation Jdev

l = Jcontact
l that ensures the current continuity across

the device/contacts boundaries (but not on a state-by-state basis). Here, Jdev
l is the

current density due to the injection from the l-th contact only. There is a similar
equation to (4.106) for the right contact with the following changes: k→ k′ in the
denominator and L→ R. Detailed Monte Carlo–molecular dynamics simulations in
bulk semiconductors show that when electron–electron scattering is the dominant
relaxation mechanism the distribution function is very close to the one given by
(4.106) [74, 76, 77].

Since Λ = ∑k Λk, according to (4.104) and (4.105), it is just a sum of independent
modes. Each mode can be represented with a two-state basis: one state for a particle
being in the state ψk (“+” state) and another state for a particle being absent from
it (“−” state). The reduced density matrix in this basis is a column vector with four
elements, ρS,k = (ρ++

S,k ,ρ+−
S,k ,ρ−+

S,k ,ρ−−S,k )T , and the equation of motion is

dρS,k

dt
=
[−iLS,k−Λkτ

]

ρS,k, (4.107)

where

LS,k =

⎡

⎢
⎢
⎣

0 0 0 0
0 2ωk 0 0
0 0 −2ωk 0
0 0 0 0

⎤

⎥
⎥
⎦

, (4.108)

Λk =

⎡

⎢
⎢
⎣

Ak 0 0 −Bk

0 Ck 0 0
0 0 Ck 0
−Ak 0 0 Bk

⎤

⎥
⎥
⎦

. (4.109)

Quantities Ak = Δ 2
k

(

1− f L
k

)

, Bk = Δ 2
k f L

k and Ck = (Ak + Bk)/2 = Δ 2
k /2 are calcu-

lated using (4.104) and (4.105).
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The elements ρ+−
S,k and ρ−+

S,k are zero in the steady state, because they

decay as exp(∓i2ωk− τCk)t. The two remaining elements, ρ++
S,k = fk(t) and

ρ−−S,k = 1− fk(t), give the following equation

fk(t)
dt

=−τ (Ak + Bk) fk(t)+ τBk =−τΔ 2
k fk(t)+ τΔ 2

k f L
k , (4.110)

where fk(t) is the distribution function of +k states in the open system region. In
the steady state, this gives just

f ∞
k = f L

k ,

f ∞
−k = f R

−k′ , (4.111)

where f ∞
−k is the steady state distribution function for −k states in the open system

region, which can be derived in a similar way, starting by evaluating 〈(HR
int)

2〉 and

∑ j, j′(HR
int)

j′α
jα ′ρ

j
R(HR

int)
jβ ′
j′β . We see that the result is the distribution function for the

scattering states of the ballistic open system determined by the injecting contact
only, which is what it should be considering the problem that we were solving.

5 Conclusion

In this chapter we gave a review of several types of single-particle and reduced
many-particle QMEs used in electronic transport. The density matrix is a quantum
statistical concept introduced by John von Neumann in 1927 [21,22] and used to de-
scribe a mixed ensemble of states of some physical system. Since physical systems
under consideration (electronic devices) are many-particle objects, it is extremely
important to arrive at the form of the QME which is, on the one hand, sufficiently
accurate in capturing important physical phenomena and, on the other hand, not too
computationally complex for practical applications.

The single-particle QME of Sect. 2 is a special case of the reduced many-particle
density matrix, where the reduction of the number of exactly described degrees
of freedom is performed down to the single particle variables. It can be derived,
similarly to the Boltzmann transport equation (BTE), by truncating the BBGKY
chain of equations [2, 13]. In the case of electrons, this means that the transport
is divided into periods of “free flight”, whose evolutions are determined by the
single-particle Hamiltonian (usually including the kinetic energy and energies due
to the external and Hartree potentials), and collisions with phonons and impurities
in the Born–Markov approximation, represented by a linear collision superoperator
(4.6). Within the context of the open system formalism the time-irreversible bound-
ary conditions are required to maintain the stability of solutions (i.e. no growing
exponentials) [3]. They can be incorporated through an explicit source term, that
describes additional dynamics due to the coupling to the contacts/reservoirs, whose
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form can only be determined phenomenologically (4.9). The PME (4.10), a closed
single-particle QME for the diagonal elements of the density matrix in the basis of
the single-particle Hamiltonian (with off-diagonal elements neglected), is applied
to steady state transport in small devices [16, 17]. A single-electron/many-phonon
QME within the perturbation expansion using the Dyson series (4.18), is applied
to transients in bulk semiconductors beyond the Born–Markov approximation for
scattering [18–20]. Because of the similarities between the single-particle QME and
the BTE, the natural choice to solve the single-particle QME would be to use the
Monte Carlo method, which is shown to be similar to the conventional ensemble
Monte Carlo.

The reduced many-particle QME, as an equation of motion for the reduced many-
particle density matrix within the open system formalism, provides a very good way
to achieve the balance between the mathematical and physical rigor and practical
applicability (computational complexity). The projection operator technique, ap-
plied to obtain the rigorous Nakajima–Zwanzig equation (4.26), is the starting point
in this approach of Sect. 3. Several techniques are introduced that further modify
the Nakajima–Zwanzig equation, making it more tractable. It is shown that in the
Born–Markov approximation it yields the most general form of the generator of
the quantum dynamical semigroup, the Lindblad form (4.37). The two most no-
table problems with the Nakajima–Zwanzig equation, the time-convoluted memory
kernel and the need to carry all the degrees of freedom in the system through the
calculation only to trace them out at the end, lead to the derivation of the conven-
tional time-convolutionless equation of motion (4.48) and its further improvement,
the partial-trace-free time-convolutionless equation of motion (4.73). The partial-
trace-free approach is achieved at the expense of working in the specific basis,
that diagonalizes the unity subspace of the projection operator, from the beginning.
This is not a drawback since the numerical computation is our final goal. Using the
partial-trace-free approach, at the end it was shown that by introducing the memory
dressing R(t) (4.77), which can be solved using the perturbation expansion [60],
the final system of equations for the time evolution (4.78) and (4.79) are much more
tractable.

Using the results of Sect. 3, it is shown in Sect. 4 how the Landauer-type steady
state distribution functions can be obtained within the reduced many-particle den-
sity matrix formalism. Working within the limits of initially separable states [ρ(0)=
ρE(0)⊗ρS(0)] and by using the coarse-graining procedure, the approximate Marko-
vian QME (4.91) is derived. Since the steady state distribution functions are re-
quired, so that the exact transient behavior is not important, (4.91) provides an
opportunity of deriving the generator of the time evolution in the limit of the
short-time expansion, by assuming that the bias is ramped up in small increments
separated by sufficiently long time intervals. The many-particle model Hamilto-
nian for coupling between the small ballistic open system and two large, ideal
(“black-body”) reservoirs is developed and shown to yield the correct Landauer-
type distribution functions for the open system, where the occupation of levels is set
by the contacts only.
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