Silicon is at the focus of considerable efforts to combine electronic and optical systems on a single chip. Recent advances in silicon photonics include nanolasers, plasmonic membranes have been developed into flexible microwave waveguides, and electro-optic modulators. Silicon nano-optical frequency ranges and offers opportunities for high-resolution tomographic imaging, genetic diagnostics, cellular imaging, nondestructive testing, and nonlinear THz spectroscopy at ultrashort timescales. However, silicon becomes opaque to THz radiation even at low levels of doping owing to the interaction of free carriers with the fields. The THz transport properties of Si have been characterized experimentally only for a few select doping densities, and their frequency dependence is not adequately described by the Drude model. Unlocking the full potential of doped silicon for a myriad of THz electronic, photonic, and plasmonic application requires a better understanding of its high-frequency transport properties.

In this letter, we present a comprehensive numerical characterization of the frequency-dependent complex conductivity of Si at THz frequencies can be accurately described by a generalized Drude (GD) model with doping-dependent parameters that capture the cross-over from phonon-dominated to Coulomb-dominated transport as the doping density increases. The simplicity of the GD model enables one to readily compute the complex conductivity of silicon for any doping density within the range studied here. © 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4798658]
treated via FDTD and MD, respectively, in the three-pronged EMC/FDTD/MD simulation. At room temperature and low doping densities ($n_0 < 10^{16}$ cm$^{-3}$), electron dynamics in silicon is dominated by electron-phonon interaction, i.e., by intravalley scattering via acoustic phonons and intervalley scattering via long-wavenumber optical and acoustic phonons.22,28 At n_0 above 10^{16} cm$^{-3}$, both Coulomb interactions and carrier-phonon scattering influence ensemble relaxation, and carrier mobility falls rapidly.

For high doping densities, at or above 10^{18} cm$^{-3}$, the short-range Coulomb interactions among carriers and between carriers and ions strongly affect transport. The force acting on an electron within a few Angstroms of an ion deviates from the representation of point-charge interaction according to Coulomb’s law.29–31 Rather than describing such interactions with the bare Coulomb force, it is appropriate to consider the dopant ion charge as distributed with a Gaussian profile of characteristic half-width r_d.26 At these high doping densities, the exchange interaction among electrons, stemming from the Pauli exclusion principle, can also significantly affect materials properties.32–35 The exchange interaction manifests itself as a reduction in the force among same-spin electrons.32–35 By using minimum-uncertainty Gaussian wave packets of radius r_c to describe electrons,32–35 the electron charge is distributed over a finite volume for all direct-force calculations among carriers, and the force is reduced for same-spin electrons.26

We determine the appropriate electron radius, r_c, and ion radius, r_d, to be used in the EMC/FDTD/MD solver in the following manner. For each n_0 of interest, we calculate the dc conductivity, $\sigma(0)$, for a wide range of r_c and r_d values.26 The optimal r_c and r_d are chosen as the values for which $\sigma(0)$ accurately reproduces the known36 dc conductivity of the material, σ_0. dc conductivity is fairly insensitive to r_c, so we choose the value corresponding to the effective radius of the Hartree-Fock exchange-correlation hole36,37

$$r_c = \exp\left(-\frac{\ln n_0}{3} + 17.366\right),$$

where n_0 is given in cm$^{-3}$. At low doping densities, conductivity does not vary appreciably with r_d either, but there is a lower limit on r_d, found to be about 1.1 Å, to ensure that electrons passing too close to an ion do not accelerate to unphysical speeds or deflect at unphysical angles.26 With increasing doping density, electron-ion interactions become increasingly important in electron transport, and conductivity becomes considerably more sensitive to the choice of r_d. For doping densities above 10^{18} cm$^{-3}$, the optimal r_d values are of order 2–4 Å, the same order of magnitude as the radii used for the Lennard-Jones potential in the molecular dynamics simulation of phosphorus compounds.38 Table I shows the optimal values of r_c and r_d for phosphorus-doped silicon for each value of n_0.

TABLE I. Calculated r_c and r_d values from $\sigma(0)$.

<table>
<thead>
<tr>
<th>n_0 [cm$^{-3}$]</th>
<th>10^{14}</th>
<th>10^{15}</th>
<th>10^{16}</th>
<th>10^{17}</th>
<th>10^{18}</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_c [Å]</td>
<td>750</td>
<td>350</td>
<td>160</td>
<td>75</td>
<td>35</td>
</tr>
<tr>
<td>r_d [Å]</td>
<td>1.1</td>
<td>1.1</td>
<td>2</td>
<td>3</td>
<td>3.5</td>
</tr>
</tbody>
</table>

We use the EMC/FDTD/MD technique to compute the frequency-dependent complex conductivity, $\sigma(\omega)$, of n-type, phosphorous-doped silicon at room temperature for electromagnetic wave excitations of frequencies 0–2.5 THz. In the simulation, an electromagnetic wave is launched into the silicon sample, and the conductivity inside the sample is computed from the local grid-based electric fields and currents.26 The real part of $\sigma(\omega)$ corresponds to power dissipation in the material, while the imaginary part of $\sigma(\omega)$ describes the phase shift between the electric field and current density in the material. In choosing the grid cell size and time step, we must strike a balance between the FDTD simulation requirements (grid cell size below 1/10 of the relevant wavelength and a time step obeying the Courant criterion26) with the requirements stemming from other parts of the combined code. For instance, to control the MD computational burden, a grid cell should on average not accommodate more than two or three electrons, which puts an upper bound on the grid cell size, making it very small for higher doping densities and prolonging the simulation. On the other hand, a grid cell too small to fit a whole electron or dopant inside it can result in instabilities related to artificial electron localization. A detailed account of these numerical considerations can be found in the appendix of Ref. 26.

Fig. 1 shows the real and imaginary parts of the complex conductivity for doping densities $10^{14} – 10^{18}$ cm$^{-3}$, calculated by EMC/FDTD/MD (circles) along with an analytical GD model fit (solid curves) to the simulation results and the Drude model prediction (dashed curves). The GD model conductivity, $\sigma_GD(\omega)$, is given by

$$\sigma_{GD}(\omega) = \frac{\sigma(0)}{1 - (\omega \tau_{GD})^{1-\alpha} \beta},$$

where α and β are real numbers, where $0 \leq \alpha, \beta \leq 1$. For $\alpha = 0$ and $\beta = 1$, GD reduces to the Drude model, which assumes that carrier relaxation time τ is independent of energy so a single value, $\tau_{\sigma(0)}$, describes the time response of the entire ensemble. This assumption is not realistic for semiconductors, where electrons scatter with phonons, charged impurities, and other carriers, and the total relaxation time has a pronounced energy dependence.28 With $\alpha \neq 0$ and $\beta \neq 1$, the GD model allows for a continuum of relevant relaxation times, such that the distribution of the logarithms of relaxation times, $\ln(\tau)$, is peaked around the logarithm of the most prominent time, $\ln(\tau_{GD})$.40–42 α governs the width while β determines the symmetry of the $\ln(\tau)$ distribution.43 In the Cole-Cole (CC) model, given by Eq. (2) with $\beta = 1$ and $0 \leq \alpha < 1$, the distribution of $\ln(\tau)$ is symmetric with respect to $ln(\tau_{GD})$, with a width that increases with increasing α.43 The Cole-Davidson (CD) model, given by Eq. (2) with $\alpha = 0$ and $0 \leq \beta \leq 1$, describes an asymmetric $\ln(\tau)$ distribution, which is zero for $\tau > \tau_{GD}$ and decays with decreasing τ for $\tau < \tau_{GD}$.43 Here, we also vary τ_{GD} in order to capture the situation in which the peak position of the relaxation-time distribution does not coincide with the $\tau_{\sigma(0)}$ from the dc Drude-model conductivity.44

Table II shows the known (measured) dc conductivity of n-type silicon for each value of n_0, the calculated dc conductivity from EMC/FDTD/MD and the corresponding relaxation
time according to the Drude model for each \(n_0 \). The generalized Drude model fitting parameters (\(\tau_{GD} \), \(\alpha \), and \(\beta \)) are also shown. We see that \(\tau_{GD} > \tau_{en} \) for every \(n_0 \); the peak relaxation time calculated from EMC/FDTD/MD data is consistently longer than the characteristic relaxation time predicted by the Drude model. In addition, for \(n_0 \leq 10^{17} \text{ cm}^{-3} \), \(\alpha \approx 0 \) and \(\beta \) is roughly constant. In this case, the GD conductivity reduces to the CD model. For \(n_0 = 10^{18} \text{ cm}^{-3} \), \(\alpha \) and \(\beta \) both change from the values they held at lower doping densities, so the material is no longer accurately described by the CD model.

Table III summarizes the quality of the fit based on the GD, CC, CD, and Drude models to the EMC/FDTD/MD data; the quality of the fit is represented by the maximal relative deviation (in percent) of the data from the fit over the entire frequency range. The GD model gives the best fit for every value of \(n_0 \); since the GD model has more free parameters than any of the others, this is not surprising. We gain insight into the appropriate regimes for the different models by considering the quality of the fit of each model to the conductivity data provided by EMC/FDTD/MD. For \(n_0 = 10^{14} - 10^{16} \text{ cm}^{-3} \), CD fits nearly as well as GD, and much better than either CC or Drude. For \(n_0 = 10^{17} \text{ cm}^{-3} \), none among the CD, CC, or Drude models fits particularly well, while GD still fits very well. For the highest \(n_0 \) in our tests, \(10^{18} \text{ cm}^{-3} \), CC fits nearly as well as GD, and CD and Drude fit equivalently poorly. These trends indicate that we may assume an almost completely asymmetric \(\ln(\tau) \) distribution, with \(\alpha = 0 \), in the low-\(n_0 \) regime where carrier relaxation is dominated by electron-phonon interactions. In the high-\(n_0 \) range, in which the short-range Coulomb interactions dominate carrier relaxation, we may assume an almost completely symmetric distribution of relaxation times, with \(\beta = 1 \). At the midrange \(n_0 \) value of about \(10^{17} \text{ cm}^{-3} \), where an interplay between Coulomb and electron–lattice interactions dominates transport, a relaxation time distribution that has both symmetric and asymmetric components is needed to accurately capture the data.

In conclusion, we have presented a calculation of the complex conductivity of silicon at room temperature, under electromagnetic wave excitation with frequencies from 0 to 2.5 THz and for a wide range of doping densities (\(10^{14} - 10^{18} \text{ cm}^{-3} \)). Our EMC/FDTD/MD numerical results represent the first comprehensive characterization of the THz-frequency conductivity of silicon over a wide range of doping densities, thereby complementing the experimental data that only exist for select doping densities. Moreover, we have shown that the conductivity data can be accurately fitted based on a GD model [Eq. (2)], with doping-dependent fitting parameters (Table II). The GD model’s flexibility is necessary to accurately capture the EMC/FDTD/MD simulation data over the wide range of doping densities, in which a cross-over from phonon-dominated to Coulomb-dominated

\[n_0 \text{ [cm}^{-3}] \]
\[10^{14} \quad 10^{15} \quad 10^{16} \quad 10^{17} \quad 10^{18} \]
\[\sigma_0 \text{ [S/cm]} \]
\[0.203 \quad 0.223 \quad 1.912 \quad 11.93 \quad 42.37 \]
\[\sigma(0) \text{ [S/cm]} \]
\[0.022 \quad 0.219 \quad 1.864 \quad 11.65 \quad 42.17 \]
\[\tau_{en} \text{ [ps]} \]
\[0.209 \quad 0.207 \quad 0.181 \quad 0.110 \quad 0.400 \]
\[\tau_{GD} \text{ [ps]} \]
\[0.341 \quad 0.336 \quad 0.264 \quad 0.168 \quad 0.071 \]
\[\alpha \]
\[0.03 \quad 0.02 \quad 0.02 \quad 0.04 \quad 0.19 \]
\[\beta \]
\[0.84 \quad 0.84 \quad 0.88 \quad 0.89 \quad 0.82 \]

Table II. Measured dc conductivity \(\sigma_0 \) calculated dc conductivity \(\sigma(0) \) based on EMC/FDTD/MD simulation and the corresponding scattering time \(\tau_{en} \) extracted based on the Drude model, as well as the generalized Drude model fitting parameters (\(\tau_{GD} \), \(\alpha \), and \(\beta \)) presented for different doping densities \(n_0 \).

Table III. Relative error (in percent) for the generalized Drude, Cole-Davidson, Cole-Cole, and Drude model fits.

<table>
<thead>
<tr>
<th>(n_0 \text{ [cm}^{-3}])</th>
<th>(10^{14})</th>
<th>(10^{15})</th>
<th>(10^{16})</th>
<th>(10^{17})</th>
<th>(10^{18})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\varepsilon_{GD})</td>
<td>0.814</td>
<td>0.986</td>
<td>0.645</td>
<td>0.820</td>
<td>3.381</td>
</tr>
<tr>
<td>(\varepsilon_{CD})</td>
<td>0.999</td>
<td>1.093</td>
<td>0.940</td>
<td>1.201</td>
<td>7.635</td>
</tr>
<tr>
<td>(\varepsilon_{CC})</td>
<td>2.448</td>
<td>2.670</td>
<td>1.665</td>
<td>1.398</td>
<td>3.469</td>
</tr>
<tr>
<td>(\varepsilon_{D})</td>
<td>2.448</td>
<td>2.670</td>
<td>1.665</td>
<td>1.398</td>
<td>7.635</td>
</tr>
</tbody>
</table>
transport occurs. The simplicity of the GD model enables one to readily compute the complex conductivity of silicon for any doping density within the range we studied here, based on interpolating the fitting parameters.

This work has been supported by the AFOSR (Grant Nos. FA9550-08-1-0052 and FA9550-11-1-0299). Part of this research was performed using resources and the computing assistance of the University of Wisconsin-Madison Center for High Throughput Computing (CHTC) in the Department of Computer Sciences.

44. $r_{\infty} = \frac{1}{m^*} \frac{n_{eq}}{q^2}$, where $m^* = 0.26 m_0$ is the conductivity effective mass of electrons in silicon, m_0 is the free-electron mass, and q is the elementary charge.