Publications

Journal Papers

  • F. Karimi, S. Mitra, S. Soleimanikahnoj, and I. Knezevic, “Plasmon-enhanced optical nonlinearity in graphene nanomeshes,” Phys. Rev. B 108, 035414 (2023). [Link]
  • S. Mitra, L. Avazpour, and I. Knezevic, “Terahertz conductivity of monolayer MoS2,” J. Comput. Electron (2023). [Link]
  • Michelle L King, Farhad Karimi, Sina Soleimanikahnoj, Suraj Suri, Song Mei, Yanbing Shi, Olafur Jonasson, Irena Knezevic, “Coupled Simulation of Quantum Electronic Transport and Thermal Transport in Mid-Infrared Quantum Cascade Lasers,” in Mid-Infrared and Terahertz Quantum Cascade Lasers, edited by Dan Botez and Mikhail A. Belkin, Cambridge University Press, Cambridge, UK, 2023. [Link]
  • C. Perez, L. Avazpour, M. K. Eryilmaz, T. Earles, S. Ruder, V. Gopalan, D. Botez, I. Knezevic, B. Ramos-Alvarado, B. M. Foley, L. J. Mawst, “Incoherent-to-Coherent Crossover in Thermal Transport Through III–V Alloy Superlattices,” Appl. Phys. Letters 121, 232201 (2022). [Link] [PDF]<– FEATURED ARTICLE
  • M. K. Eryilmaz, S. Soleimanikahnoj, O. Jonasson, and I. Knezevic, “Inflow Boundary Conditions and Nonphysical Solutions to the Wigner Transport Equation,” J. Comput. Electron. 20, 2039–2051 (2021). [Link][arXiv]
  • F. Karimi, S. Soleimanikahnoj, I. Knezevic, “Tunable plasmon-enhanced second-order optical nonlinearity in transition-metal-dichalcogenide nanotriangles,” Phys. Rev. B (Letter) 103, L161401 (2021). [Link] [arXiv]
  • S. Soleimanikahnoj, M. L. King, and I. Knezevic, “Density-Matrix Model for Photon-Driven Transport in Quantum Cascade Lasers,” Phys. Rev. Applied 15, 034045 (2021). (2021). [Link] [arXiv]
  • S. W. Belling, Y. C. Li, A. H. Davoody, A. J. Gabourie, I. Knezevic, “DECaNT: Simulation Tool for Diffusion of Excitons in Carbon Nanotube Films,” J. Appl. Phys. 129, 084301 (2021).  [Link] [arXiv]
  • S. Soleimanikahnoj, O. Jonasson, F. Karimi, I. Knezevic, “Numerically efficient density-matrix technique for modeling electronic transport in midinfrared quantum cascade lasers,” J. Comput. Electron. 20, 280–309 (2021). [Link] [arXiv]
  • F. Karimi and I. Knezevic, “Dielectric waveguides with embedded graphene nanoribbons for all-optical broadband modulation,” Opt. Mater. Express 9(11), 4456-4463 (2019). [Link]
  • G. R. Jaffe, S. Mei, C. Boyle, J. D. Kirch, D. E. Savage, D. Botez, L. J. Mawst, I. Knezevic, M. G. Lagally, and M. A. Eriksson, “Measurements of the thermal resistivity of InAlAs, InGaAs and InAlAs/InGaAs Superlattices,” ACS Appl. Mater. Interfaces 11, 11970-11975 (2019). [Link]
  • F. Karimi, A.H. Davoody, and I. Knezevic, “Nonlinear optical response in graphene nanoribbons: The critical role of electron scattering,” Phys. Rev. B 97, 245403 (2018).[Link]
  • S.  Mei and I. Knezevic, “Thermal conductivity of ternary III-V semiconductor alloys: mass-difference scattering versus long-range order,” J. Appl. Phys. 123, 125103 (2018). [Link][arXiv]
  • W. Peng, M. Zamiri, S. A. Scott, F. Cavallo, J. J. Endres, I. Knezevic, M. A. Eriksson, and M. G. Lagally, “Electronic transport in hydrogen-terminated Si(001) nanomembranes,” Phys. Rev. Applied 9, 024037 (2018). [PDF][Link]
  • S. Soleimanikahnoj and I. Knezevic, “Pseudospin electronics in bilayer phosphorene nanoribbons,” Phys. Rev. Applied 8, 064021 (2017). [PDF][Link][arXiv]
  • F. Karimi and I. Knezevic, “Plasmons in graphene nanoribbons,” Phys. Rev. B 96, 125417 (2017). [PDF][Link]
  • S. Soleimanikahnoj and I. Knezevic, “Tunable electronic properties of multilayer phosphorene and its nanoribbons,” J. Comput. Electron16, 568-575 (2017). [PDF][Link][arXiv]
  • A. H. Davoody, F. Karimi, M. S. Arnold, and I. Knezevic, “Unexpectedly fast phonon-assisted exciton hopping in carbon nanotubes,” J. Phys. Chem. C 121, 13084–13091 (2017). [PDF][Link]
  • Y. B. Shi, S. Mei, O. Jonasson, and I. Knezevic, “Modeling quantum cascade lasers: Coupled electron and phonon transport far from equilibrium and across disparate spatial scales,” Fortschr. Phys. 65, 1600084 (2017). [PDF][Link][arXiv]
  • [REVIEW] S. Mei, C. J. Foss, L. N. Maurer, O. Jonasson, Z. Aksamija, and I. Knezevic, “Boundaries, interfaces, point defects, and strain as impediments to thermal transport in nanostructures,” 2017 IEEE International Reliability Physics Symposium (IRPS), pp. 6A-1.1-6A-1.10 (2017)[PDF] [Link]
  • [BOOK CHAPTER] S. Mei, Y. B. Shi, O. Jonasson, and I. Knezevic, “Quantum Cascade Lasers: Electrothermal Simulation,” in Handbook of Optoelectronic Device Modeling and Simulation, Ed. Joachim Piprek, CRC Press, Taylor and Francis Books, 2017.  [arXiv][Link]
  • O. Jonasson, F. Karimi, and I. Knezevic, “Partially coherent electron transport in terahertz quantum cascade lasers based on a Markovian master equation for the density matrix,” J. Comput. Electron15, 1192 (2016). [PDF][Link][arXiv]
  • L. N. Maurer, S. Mei, and I. Knezevic, “Rayleigh waves, surface disorder, and phonon localization in nanostructures ,” Phys. Rev. B 94, 045312 (2016). [PDF] [Link] [arXivImage from paper chosen for PRB Kaleidoscope
  • A. H. Davoody, F. Karimi, M. S. Arnold, and I. Knezevic, “Theory of Exciton Energy Transfer in Carbon Nanotube Composites,” J. Phys. Chem. C 120, 16354−16366 (2016). [PDF][Link][arXiv]
  • O. Jonasson, S. Mei, F. Karimi, J. D. Kirch, D. Botez, L. J. Mawst, and I. Knezevic, “Quantum transport simulation of high-power 4.6-μm quantum cascade lasers,”   Photonics 3, 38 (2016). [PDF][Link]
  • F. Karimi, A. H. Davoody, and I. Knezevic, “Dielectric function and plasmons in graphene: a self-consistent-field theory within a Markovian master-equation formalism,” Phys. Rev. B 93, 205421 (2016). [PDF][Link][arXiv]<–EDITORS’ SUGGESTION
  • [BOOK CHAPTER] L. N. Maurer, S. Mei, and I. Knezevic, “Phonon Monte Carlo: Generating Random Variates for Thermal Transport Simulation,” to appear in Nanophononics, ed. Z. Aksamija, Pan Stanford Publishing (2016). [arXiv]
  • S. Mei and I. Knezevic, “Thermal conductivity of III-V semiconductor superlattices,” J. Appl. Phys. 118, 175101 (2015). [PDF][Link][arXiv<–EDITORIALLY HIGHLIGHTEDHERE
  • O. Jonasson and I. Knezevic, “Dissipative transport in superlattices within the Wigner
    function formalism,” J. Comput. Electron. 14, 879-887 (2015). [PDF][Link]
  • L. N. Maurer, Z. Aksamija, E. B. Ramayya, A. H. Davoody, and I. Knezevic, “Universal features of phonon transport in nanowires with rough correlated surfaces,” Appl. Phys. Lett. 106, 133108 (2015). [PDF][Link]
  • S. Mei, L. N. Maurer, Z. Aksamija, and I. Knezevic, “Full-dispersion Monte Carlo simulation of phonon transport in micron-sized graphene nanoribbons,” J. Appl. Phys116, 164307 (2014). [PDF] [Link]
  • O. Jonasson and I. Knezevic, “Coulomb-driven terahertz-frequency intrinsic current oscillations in a double-barrier tunneling structure,” Phys. Rev. B 90, 165415 (2014). [PDF] [Link]
  • Y. B. Shi and I. Knezevic, “Nonequilibrium phonon effects in midinfrared quantum cascade lasers,” J. Appl. Phys. 116, 123105 (2014). [PDF] [Link]
  • N. Sule, K. J. Willis, S. C. Hagness, and I. Knezevic, “Terahertz-frequency electronic transport in graphene,” Phys. Rev. B 90, 045431 (2014). [PDF][Link]
  • Z. Aksamija and I. Knezevic, “Lattice thermal transport in large-area polycrystalline graphene,” Phys. Rev. 90, 035419  (2014). [PDF] [Link]
  • N. Sule, S. C. Hagness, and I. Knezevic, “Clustered impurities and carrier transport in supported graphene,” Phys. Rev. B 89, 165402 (2014). [PDF] [Link]
  • A. H. Davoody, E. B. Ramayya, L. N. Maurer, and  I. Knezevic, “Ultrathin GaN Nanowires: Electronic, Thermal, and Thermoelectric Properties,” Phys. Rev. B 89, 115313 (2014). [PDF] [Link]
  • Z. Aksamija and I. Knezevic, “Lattice thermal conductivity in Si1-xGex/Si1-yGey superlattices: Competition between interfacial and internal scattering,” Phys. Rev. B 88, 155318 (2013) . [PDF] [Link]
  • N. Sule, K. J. Willis, S. C. Hagness, and I. Knezevic, “EMC/FDTD/MD simulation of carrier transport and electrodynamics in two-dimensional electron systems,” J. Comput. Electron.12, 563-571 (2013). [PDF] [Link]
  • [REVIEW] I. Knezevic and  B. Novakovic, “Time-dependent transport in open systems based on quantum master equations,” J. Comput. Electron. 12, 363-374 (2013) . [PDF] [Link]
  • M.-H. Bae, Z. Li, Z. Aksamija, P. N. Martin, F. Xiong, Z.-Y. Ong, I. Knezevic, and E.  Pop, “Ballistic to diffusive crossover of heat flow in graphene ribbons,” Nature Communications 4, 1734 (2013). [PDF] [Link].
  • K. J. Willis, S. C. Hagness, and I. Knezevic, “A generalized Drude model for doped silicon at THz frequencies derived from microscopic transport simulation,” Appl. Phys. Lett. 102, 122113 (2013). [PDF] [Link]
  • W. Peng, Z. Aksamija, S. A. Scott, J. J. Endres, D. E. Savage, I. Knezevic, M. A. Eriksson, and M. G. Lagally, “Probing Semiconductor Surface Electronic Structure with Charge Transport in Nanomembranes,” Nature Communications 4, 1339 (2013). [PDF] [Link]
  • B. Novakovic and I. Knezevic, “Non-Markovian electron dynamics in nanostructures coupled to dissipative contacts,” Fortschritte der Physik – Progress of Physics 61, 323-331 (2013). [PDF][Link]
  • [REVIEW] D. K. Ferry, R. Akis, A. M. Burke, I. Knezevic, R. Brunner, R. Meisels, F. Kuchar, and J. P. Bird, “Open Quantum Dots: Physics of the Non-Hermitian Hamiltonian,”  Fortschritte der Physik – Progress of Physics 61, 291-304 (2013).   [PDF] [Link]
  • Z. Aksamija and I. Knezevic, “Thermal transport in graphene nanoribbons supported on SiO2,” Phys. Rev. B 86, 165426 (2012). [PDF] [Link]
  • E. B. Ramayya, L. N. Maurer, A. H. Davoody, and I. Knezevic, “Thermoelectric properties of ultrathin silicon nanowires,” Phys. Rev. B 86, 115328 (2012). [PDF] [Link]
  • N. Sule and I. Knezevic, “Phonon-limited electron mobility in graphene using electronic tight-binding Bloch waves,” J. Appl. Phys112 , 053702 (2012). [PDF] [Link]
  • B. B. Yang, S. L. Katz, K. J. Willis, M. J. Weber, I. Knezevic, S. C. Hagness, and J. H. Booske, “A High-Q Terahertz Resonator for the Measurement of Electronic Properties of Conductors and Low-Loss Dielectrics,” IEEE Transactions on Terahertz Science and Technology 2, 449-459 (2012). [PDF] [Link]
  • Y. B. Shi, Z. Aksamija, and I. Knezevic, “Self-Consistent Thermal Simulation of GaAs/Al0.45Ga0.55As Quantum Cascade Lasers,” J. Comput. Electron. 11, 144-151 (2012). [PDF] [Link]
  • M. P. Kirley, B. Novakovic, N. Sule, M. J. Weber, I. Knezevic, J.H. Booske, “Effect of Sputtered Lanthanum Hexaboride Film Thickness on Field Emission from Metallic Knife Edge Cathodes,” J. Appl. Phys. 111, 063717 (2012). [PDF] [Link]
  • B. Novakovic, R. Akis, and I. Knezevic, “Transport in curved nanoribbons in a magnetic field,” Phys. Rev. B 84, 195419 (2011). [PDF] [Link]
  • K. J. Willis, S. C. Hagness, and I. Knezevic,
    “Multiphysics simulation of high-frequency carrier dynamics in conductive materials,”
    J. Appl. Phys. 110, 063714 (2011). [PDF] [Link]
  • Z. Aksamija and I. Knezevic,
    “Lattice thermal conductivity of graphene nanoribbons: anisotropy and edge roughness scattering,”
    Appl. Phys. Lett. 98, 141919 (2011). [PDF] [Link]
  • [BOOK CHAPTER] B. Novakovic and I. Knezevic,
    “Quantum Master Equations in Electronic Transport,”
    in Nano-electronic Devices, Edited by D. Vasileska and S. M. Goodnick, pp. 249-287 (Springer, 2011). [PDF] [Link]
  • H. J. Ryu, Z. Aksamija, D. M. Paskiewicz, S. A. Scott, M. G. Lagally, I. Knezevic, and M. A. Eriksson, “Quantitative determination of contributions to the thermoelectric power factor in Si nanostructures,” Phys. Rev. Lett. 105, 256601 (2010). [PDF] [Link]
  • L. P. Zarbo, J. Sinova, I. Knezevic, J. Wunderlich, and T. Jungwirth,
    “Modeling of diffusion of injected electron spins in spin-orbit coupled microchannels,”
    Phys. Rev. B 82, 205320 (2010). [PDF] [Link]
  • Z. Aksamija and I. Knezevic, “Anisotropy and boundary scattering in the lattice thermal conductivity of silicon nanomembranes,” Phys. Rev. B 82, 045319 (2010). [PDF] [Link]
  • Feng Chen, E. B. Ramayya, C. Euaruksakul, F. J. Himpsel, G. K. Celler, Bingjun Ding, I. Knezevic, and M. G. Lagally, “Quantum confinement, surface roughness, and the conduction band structure of ultrathin silicon membranes,”
    ACS Nano 4, 2466–2474 (2010). [PDF] [Link]
  • K. J. Willis, S. C. Hagness, and I. Knezevic, “Terahertz conductivity of doped silicon calculated using the ensemble Monte Carlo/finite-difference time-domain simulation technique,” Appl. Phys. Lett. 96, 062106 (2010). [PDF] [Link]
  • Z. Aksamija and I. Knezevic, “Thermoelectric properties of silicon nanostructures,”
    J. Comput. Electron. 9, 173-179 (2010). [PDF] [Link]
  • [[BOOK CHAPTER] X. Gao, D. Botez, and I. Knezevic,
    “Multivalley simulation and design of quantum cascade lasers,”
    in Encyclopedia of Nanoscience and Nanotechnology, Edited by H. S. Nalwa, American Scientific Publishers, 2010. [PDF] [Link]
  • [BOOK CHAPTER] D. Vasileska, D. Mamaluy, I. Knezevic, H. R. Khan, and S. M. Goodnick, “Quantum transport in nanoscale devices,”
    in Encyclopedia of Nanoscience and Nanotechnology, Edited by H. S. Nalwa, American Scientific Publishers, 2010. [PDF] [Link]
  • [REVIEW] E. B. Ramayya and I. Knezevic, “Self-consistent Poisson-Schrödinger-Monte Carlo Solver: electron mobility in silicon nanowires,” J. Comput. Electron. 9, 206-310 (2010). [PDF] [Link]
  • S. A. Scott, W. Peng, A. M. Kiefer, H-Q. Jiang, I. Knezevic, D. E. Savage, M. A. Eriksson, and M. G. Lagally, “Influence of Surface Chemical Modification on Charge Transport Properties in Ultrathin Silicon Membranes,”
    ACS Nano 3, 1683–1692 (2009). [PDF] [Link]
  • G. Qin, H. Zhou, E. B. Ramayya, Z. Ma, and I. Knezevic,
    “Electron mobility in scaled silicon metal-oxide-semiconductor field-effect transistors on off-axis substrates,”
    Appl. Phys. Lett. 94, 073504 (2009). [PDF] [Link]
  • M.-H. Huang, C. S. Ritz, B. Novakovic, D. Yu, Y. Zhang, F. Flack, D. E. Savage, P. G. Evans, I. Knezevic, F. Liu, and M. G. Lagally, “Mechano-electronic Superlattices in Silicon Nanoribbons,” ACS Nano 3, 721-727 (2009). [PDF] [Link]
  • [REVIEW] K. J. Willis, J. S. Ayubi-Moak, S. C. Hagness, and I. Knezevic, “Global modeling of carrier-field dynamics in semiconductors using EMC-FDTD,” J. Comput. Electron. 8, 153-171 (2009). [PDF] [Link]
  • [REVIEW] I. Knezevic , E. B. Ramayya , D. Vasileska, and S. M. Goodnick,
    “Diffusive Transport in Quasi-2D and Quasi-1D Electron Systems,”
    J. Comput. Theor. Nanosci. 6, 1725-1753 (2009). [PDF] [Link]
  • E. B. Ramayya, D. Vasileska, S. M. Goodnick, and I. Knezevic, “Electron transport in silicon nanowires: the role of acoustic phonon confinement and surface roughness scattering,” J. Appl. Phys. 104, 063711 (2008). [PDF] [Link]
  • X. Gao, M. D’Souza, D. Botez, and I. Knezevic, “Design and optimization of a GaAs-based sub-7-micron quantum cascade laser based on multivalley Monte Carlo simulation,”Optical and Quantum Electronics 40, 331-336 (2008). [PDF] [Link]
  • X. Gao, D. Botez, and I. Knezevic, “Phonon confinement and electron transport in GaAs-based quantum cascade structures,”
    J. Appl. Phys. 103, 073101 (2008). [PDF] [Link]
  • I. Knezevic, “Decoherence due to contacts in ballistic nanostructures,”
    Phys. Rev. B 77, 125301 (2008). [PDF] [Link]
  • E. B. Ramayya, D. Vasileska, S. M. Goodnick, and I. Knezevic, “Cross-sectional dependence of electron mobility and lattice thermal conductivity in silicon nanowires,”
    J. Comput. Electron. 7, 319-323 (2008). [PDF] [Link]
  • X. Gao, D. Botez, and I. Knezevic, “Confined phonon scattering in Monte Carlo simulation of mid-infrared intersubband lasers,”
    J. Comput. Electron. 7, 209–212 (2008). [PDF] [Link]
  • I. Knezevic, “Contact-induced decoherence in nanodevices,”
    J. Comput. Electron. 7, 276-279 (2008). [PDF] [Link]
  • X. Gao, M. D’Souza, D. Botez, and I. Knezevic, “Design and simulation of deep-well GaAs-based quantum cascade lasers for 6.7 µm room-temperature operation,”
    J. Appl. Phys. 102, 113107 (2007). [PDF] [Link]
  • G. J. Meyer, N. L. Dias, R. H. Blick, and I. Knezevic, “Magnetotransport in non-planar SiGe/Si nanomembranes,” IEEE Trans. Nanotechnol. 6, 446-450 (2007). [PDF] [Link]
  • I. Knezevic, “Decoherence and quantum transport in nanodevices,”
    J. Comput. Theor. Nanosci. 4, 749-760 (2007). [PDF] [Link]
  • G. J. Meyer and I. Knezevic, “Simulation of high-field magnetotransport in non-planar 2D electron systems,” J. Comput. Electron. 6, 219-222 (2007). [PDF] [Link]
  • E. B. Ramayya, D.Vasileska, S.M. Goodnick, and I. Knezevic, “Electron mobility in silicon nanowires,” IEEE Trans. Nanotechnol. 6, 113-117 (2007). [PDF] [Link]
  • X. Gao, D. Botez, and I. Knezevic, “Monte Carlo modeling of X-valley leakage in quantum cascade lasers,” J. Comput. Electron. 6, 305-308 (2007). [PDF] [Link]
  • X. Gao, D. Botez, and I. Knezevic, “X-valley leakage in GaAs-based mid-infrared quantum cascade lasers: a Monte Carlo study,”
    J. Appl. Phys. 101, 063101 (2007). [PDF] [Link]
  • X. Gao, D. Botez, and I. Knezevic,
    “X valley leakage in GaAs/AlGaAs quantum cascade lasers,” 
    Appl. Phys. Lett.
     89, 191119 (2006). [PDF] [Link]
  • P. P. Zhang, E. P. Nordberg, B.-N. Park, G. Celler, I. Knezevic, P. G. Evans, M. A. Eriksson and M. G. Lagally, “Electrical conductivity in silicon nanomembranes,”
    New J. Phys. 8, 200 (2006). [PDF] [Link]
  • P. Zhang, E. Tevaarwerk, B.-N. Park, D. Savage, G. Celler, I. Knezevic, P. Evans, M. Eriksson, M. G. Lagally,
    “Electronic transport in nanometer-scale silicon-on-insulator membranes,”
    Nature 439, 703-706 (2006). [PDF] [Link]
  • I. Knezevic and D. K. Ferry, “A quantum many-body density matrix model for sub-femtosecond transport in mesoscopic structures,”
    J. Comput. Electron. 3, 359-362 (2004). [PDF] [Link]
  • I. Knezevic and D. K. Ferry, “Open system evolution and “memory dressing”,”
    Phys. Rev. A 69, 012104 (2004). [PDF] [Link]
  • I. Knezevic and D. K. Ferry, “Open-system nonequilibrium Green’s functions and quantum transport in the transient regime,”
    Semiconductor Science and Technology 19, S220 (2004). [PDF] [Link]
  • I. Knezevic and D. K. Ferry, “What mesoscopic structures really “remember”: insufficiency of the open boundary approximation,”
    Superlattices and Microstructures 34, 367 (2003). [PDF] [Link]
  • D. K. Ferry, R. Akis, J. P. Bird, M. Elhassan, I. Knezevic, C. Prasad, and A. Shailos,
    “Generalized interfaces,” Journal of Vacuum Science and Technology B 21, 1891 (2003). [PDF] [Link]
  • I. Knezevic and D. K. Ferry, “Quantum transport and memory effects in mesoscopic structures,” Physica E 19, 71 (2003). [PDF] [Link]
  • I. Knezevic and D. K. Ferry, “Memory effects and nonequilibrium transport in open many-particle quantum systems,” Phys. Rev. E 67, 066122 (2003). [PDF] [Link]
  • I. Knezevic and D. K. Ferry, “Partial-trace-free time-convolutionless equation of motion for the reduced density matrix,” Phys. Rev. E 66, 016131 (2002). [PDF] [Link]
  • I. Knezevic, D. Vasileska, and D. K. Ferry, “Impact of Strong Quantum Confinement on the Performance of a Highly Asymmetric Device Structure: Monte Carlo Particle-Based Simulation of a Focused-Ion-Beam MOSFET,” IEEE Trans. Electron Dev. 49, 1019 (2002). [PDF] [Link]
  • D. Vasileska, I. Knezevic, R. Akis, S. Ahmed, and D. K. Ferry,
    “The Role of Quantum Effects on the Operation of 50 nm MOSFETs, 250 nm FIBMOS Devices and Narrow-Width SOI Device Structures,”
    J. Comput. Electron. 1, 453 (2002). [PDF] [Link]
  • I. Knezevic, D. Vasileska, X. He, D. K. Schroder and D. K. Ferry,
    “Low-Field Mobility and Quantum Effects in Asymmetric Silicon-Based Field-Effect Devices,” J. Comput. Electron. 1, 273 (2002). [PDF] [Link]
  • D. K. Ferry, R. Akis, and I. Knezevic,
    “Quantum Waves – the Proper Basis for Low Dissipation Quantum Computing,”
    Microelectronic Engineering 63, 17 (2002). [PDF] [Link]
  • D. Vasileska, R. Akis, I. Knezevic, S. N. Miličić, S. S. Ahmed and D. K. Ferry,
    “Role of Quantization Effects in the Operation of Ultrasmall MOSFETs and SOI Device Structures,”
    Microelectronic Engineering 63, 233 (2002). [PDF] [Link]
  • I. Knezevic and D. K. Ferry,
    “Evolution of the reduced density matrix: a generalized projection-operator approach,”
    Microelectronic Engineering 63, 105 (2002). [PDF] [Link]
  • I. Knezevic, D. Vasileska, R. Akis, J. Kang, X. He and D. K. Schroder,
    “Monte Carlo particle-based simulation of FIBMOS: impact of strong quantum confinement on device performance,”
    Physica B 314, 386 (2002). [PDF] [Link]
  • I. Knezevic and Z. Radovic,
    “Quasiparticle Excitation Spectrum of an Isolated Vortex in a High-Temperature Superconductor,” Physica C 318, 640 (1999). [PDF] [Link]
  • I. Knezevic and Z. Radovic,
    “Bound States in the Vortex Core”,
    Solid State Phenomena 61-2, 261 (1998).; also: cond-mat/9812131. [PDF] [Link]

Conference Proceedings

  • A. H. Davoody, A. J. Gabourie, and I. Knezevic, “Simulation of Resonance Energy Transfer in Carbon Nanotube Composites for Photovoltaic Applications, in Proceedings of SISPAD 2015. [PDF] [Link]
  • A. H. Davoody and I. Knezevic, “Study of the Förster resonance energy transfer in composite films  of carbon nanotubes,” Proc. SPIE 9358, Physics, Simulation, and Photonic Engineering of Photovoltaic Devices IV, 93580T (March 16, 2015). [PDF] [Link]
  • K. J. Willis, N. Sule, S. C. Hagness, and I. Knezevic, “Coupled simulation of carrier transport and electrodynamics: the EMC/FDTD/MD technique,”Proc. SPIE 9357, Physics and Simulation of Optoelectronic Devices XXIII, 935706 (March 16, 2015).  [PDF] [Link]
  • N. Sule, K. J. Willis, S. C. Hagness, and I. Knezevic, “Multiphysics simulations of carrier transport and electrodynamics in two-dimensional electron systems,” APS-URSI General Assembly 2014. [PDF] [Link]
  • Z. Aksamija and I. Knezevic, “Anisotropy and Edge Roughness Scattering in the Lattice Thermal Conductivity of Graphene Nanoribbons”, ECS Transactions 35, 195 (2011). [PDF] [Link]
  •  Z. Aksamija and I. Knezevic, “Thermoelectric Properties of Silicon-On-Insulator Nanostructures”, ECS Transactions 35, 267 (2011). [PDF] [Link]
  •  I. Knezevic, “Computational Design of Semiconductor Nanostructures for Optoelectronic, Electronic, and Thermoelectric Applications,” Proceedings of  IEEE NANO 2010 (http://www.ieeenano2010.org), Modeling and Simulation Section, Seoul, Korea (August 17-20, 2010). Available online through IEEE Xplore. http://dx.doi.org/10.1109/NANO.2010.5698047
  • Z. Aksamija and I. Knezevic, “Thermoelectric properties of silicon nanostructures,”
    Proceedings of IEEE NANO 2010 (http://www.ieeenano2010.org), Modeling and Simulation Section, Seoul, Korea (August 17-20, 2010). [Link]
  • D. Vasileska, K. Raleva, S. M. Goodnick, Z. Aksamija, and I. Knezevic, “Thermal modeling of nanodevices,”
    Proceedings of the 14th International Workshop on Computational Electronics (IWCE 2010) Available online through IEEE Xplore,  http://dx.doi.org/10.1109/IWCE.2010.5677916
  • E. B. Ramayya and I. Knezevic, “Ultrascaled Silicon Nanowires as Efficient Thermoelectric Materials,”Proceedings of the 13th International Workshop on Computational Electronics (IWCE 2009), Beijing, China, May 27-29, 2009, pp. 129-132.  Available online through IEEE Xplore. http://dx.doi.org/10.1109/IWCE.2009.5091160
  • K. J. Willis, S. C. Hagness, and I. Knezevic, “A Global EMC-FDTD Simulation Tool for High-Frequency Carrier Transport in Semiconductors,”Proceedings of the 13th International Workshop on Computational Electronics (IWCE 2009), Beijing, China, May 27-29, 2009, pp. 265-268.
    Available online through IEEE Xplore. http://dx.doi.org/10.1109/IWCE.2009.5091080
  • E. B. Ramayya, D. Vasileska, S. M. Goodnick, and I. Knezevic, “Thermoelectric Properties  of  Silicon Nanowires,”           Proceedings of the 8th International Conference on Nanotechnology (IEEE NANO ‘08), Arlington, TX, August 18-21, 2008, pp. 339-342.
    Available online through IEEE Xplore. http://dx.doi.org/10.1109/NANO.2008.106
  • B. Novakovic and I. Knezevic, “Effect of contacts on quantum transport in nanostructures,” Proceeedings of the 8th International Conference on Nanotechnology (IEEE NANO ‘08) Arlington, TX, August 18-21, 2008, pp. 362 – 365.
    Available online through IEEE Xplore. http://dx.doi.org/10.1109/NANO.2008.112
  • X. Gao, M. D’Souza, D. Botez, and I. Knezevic,
    “Design and optimization of a GaAs-based sub-7-micron quantum cascade laser based on multivalley Monte Carlo simulation,” Proceedings of the 7th International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD ’07),  University of Delaware, Delaware, 24 – 28 September, 2007,  pp. 17 – 18. (Best student paper award)
    Available online through IEEE Xplore. http://dx.doi.org/10.1109/NUSOD.2007.4349002
  • E.  B. Ramayya, D. Vasileska, S. M. Goodnick, and I. Knezevic, “Electronic and Thermal Properties of Silicon Nanowires,” ECS Transactions 6 (4), 159-164 (2007).
  • X. Gao, D. Botez, and I. Knezevic,  “Monte Carlo simulation of AlGaAs/GaAs QCLs including both Γ and X valley transport,” Proceedings of the IEEE 20th International Semiconductor Laser Conference (ISLC’06), Waikoloa, Hawaii, 17 – 21 September, 2006, pp. 99 – 100.
    Available online through IEEE Xplore. http://dx.doi.org/10.1109/ISLC.2006.1708105
  • E. B. Ramayya, D. Vasileska, S. M. Goodnick, and I. Knezevic,  “Mobility of Electrons in Rectangular Si Nanowires,” Proceedings of the 2006 Nanotechnology Conference and Trade Show (Nanotech 2006), Volume 3, Boston, Massachusetts, May 7-11, 2006, pp. 13-15.
  •  E. B. Ramayya, D. Vasileska, S. M. Goodnick, and I. Knezevic,  “Electron transport in Si nanowires,” Journal of Physics: Conference Series 38, 126 (2006) – Proceedings of NPMS-7/SIMD-5 (Maui 2005).
  • N. Shaji, H.Qin, I. Knezevic, C. Deneke, O.G. Schmidt, M. A. Eriksson and R.H. Blick,  “Electron transport in curved low dimensional electron systems,”
    in Nonequilibrium Carrier Dynamics in Semiconductors, Proceedings of the 14th International Conference on Nonequilibrium Carrier Dynamics in Semiconductors, M. Saraniti and U. Ravaioli, eds., Chicago, USA, July 25-19, 2005, pp. 1-5, Springer Proceedings in Physics, vol. 110 (2006).
  •  G. J. Meyer, N. Shaji, R. H. Blick, and I. Knezevic, “Conductance Resonances in Curved Quantum Cavities,” in Nonequilibrium Carrier Dynamics in Semiconductors, Proceedings of the 14th International Conference on Nonequilibrium Carrier Dynamics in Semiconductors, M. Saraniti and U. Ravaioli, eds., Chicago, USA, July 25-19, 2005, pp. 321-324, Springer Proceedings in Physics, vol. 110 (2006).
  • P. P. Zhang, E. Tevaarwerk, B. N. Park, D. E. Savage, G. Celler, I. Knezevic, P. G. Evans, M. A. Eriksson, and M. G. Lagally, “Scanning Tunnelling Microscopy of Ultra-thin Silicon-on-Insulator,” in Nonequilibrium Carrier Dynamics in Semiconductors, Proceedings of the 14th International Conference on Nonequilibrium Carrier Dynamics in Semiconductors, M. Saraniti and U. Ravaioli, eds., Chicago, USA, July 25-19, 2005, pp. 341-344, Springer Proceedings in Physics, vol. 110 (2006).
  • D. K. Ferry, R. Akis, M. J. Gilbert, and I. Knezevic, “Do we need ‘quantum’ for quantum computing?,” Proceedings of  SPIE 5115, 271 (2003). (Keynote presentation)
    22.  I. Knezevic and D. K. Ferry,  “Nonequilibrium Transport in Open Quantum Systems,” in Progress in Nonequilibrium Green’s Functions II, M. Bonitz and D. Semkat, Eds. (World Scientific Press, Singapore, 2003), pp. 214-221.
  • D. K. Ferry, I. Knezevic, S. M. Ramey, and L. Shifren, “Nonequilibrium Transport in Nanoscale Semiconductor Devices,”   in Progress in Nonequilibrium Green’s Functions II, M. Bonitz and D. Semkat, Eds. (World Scientific Press, Singapore, 2003), pp. 127-142.
  • D. Vasileska, I. Knezevic, R. Akis and D. K. Ferry ,         “The Role of the Quantization Effects on the Operation of 50 nm MOSFET and 250 nm FIBMOS Devices,” Proceedings of the Fifth International Conference on Modeling and Simulation of Microsystems (MSM 2002), (Computational Publications, Boston, 2002), pp. 556-559.
  • I. Knezevic and Z. Radovic,  “Quasiparticle Spectrum of Vortices in Cuprates”,  Proceedings of SPIE 3481, 106 (1998). (Invited paper)

PhD Dissertations

  • Sina Soleimanikahnoj, “Quantum Transport in Electronic and Optoelectronic Nanostructures”, UW Madison, 2021. [PDF]
  • Michelle L. King, “FiPo FDTD: A Method to Calculate Both Electromagnetic Fields and Potentials from First-Order Equations with Convolutional Perfectly Matched Layer Boundary Conditions,” UW Madison, 2021. [PDF]
  • Farhad Karimi, “Quantum transport theory on optical and plasmonic properties of nanomaterials,” UW Madison 2017. [PDF]
  • Song Mei, “Simulation of Thermal Transport in Semiconductor Nanostructures,” UW Madison 2017. [PDF]
  • Amirhossein Davoody, “Dynamics of Electronic Excitations in Carbon Nanotube Composites,” UW Madison 2016. [PDF]
  • Olafur Jonasson, “Quantum transport in semiconductor heterostructures using density-matrix and Wigner-function formalisms,” UW Madison 2016. [PDF]
  • Leon Maurer, “Phonon dynamics and thermal transport in surface-disordered nanostructures,” UW Madison 2016. [PDF]
  • Yanbing Shi, “Electrothermal simulation of quantum cascade lasers,” UW Madison 2015. [PDF]
  • Nishant Sule, “Electronic transport in graphene: A multiphysics computational study,” UW Madison 2014. [PDF]
  • Bozidar Novakovic, “Quantum transport in the transient regime and unconventional geometries,” UW Madison 2012. [PDF]
  • Edwin Ramayya, “Thermoelectric properties of ultrascaled silicon nanowires,” UW Madison 2010. [PDF]
  • Keely Willis, “EMC/FDTD/MD for multiphysics characterization of semiconductors at THz frequencies,” UW Madison 2010. [PDF]
  • Xujiao (Suzey) Gao, “Monte Carlo simulation of electron dynamics in quantum cascade lasers,” UW Madison 2008. [PDF]